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Preface

Studying manifolds and vector bundles is, in many ways, doing calculus in
its most refined and serious form. Over the past century, the foundations
of this subject have been firmly established, and a wide array of texts now
explore these ideas at varying levels of depth and sophistication.

This book grew out of several graduate courses I have taught at the Univer-
sity of Iowa. While many excellent resources exist and have influenced this
book, I have often found it difficult to recommend a single reference that
presents the essential ideas in a coherent order, at a measured pace, with
enough illustrative examples — all within a manageable length.

The structure of the book reflects its classroom origins. It is formatted for a
one-semester course and is organized as a sequence of lectures, each designed
to cover a natural chunk of material suitable for one or two sessions. To some
extent, the format and selection of topics are aimed at students preparing
for PhD qualification exams. The intended audience includes primarily first-
year graduate students, though the material is also accessible to advanced
undergraduates with a good grasp on real analysis, point-set topology, multi-
variable calculus, and linear algebra. Thanks to the inclusion of detailed
solutions to all exercises, the book is also suitable for independent study.

Throughout, I have placed strong emphasis on examples and computations.
Abstract definitions are consistently followed by concrete calculations and
carefully chosen exercises, designed to help readers internalize key ideas and
prepare for more advanced work. I have repeatedly observed that some
students can learn and recite theorems — even reproduce their proofs — yet
struggle with applying concepts in explicit computations. For this reason,
all exercises in the book are accompanied by detailed solutions. While some
books offer a large number of exercises, many of which involve results not

1X



b'e Preface

covered in the main text, here the exercises are primarily computational and
closely tied to the core material.

While the book contains many proofs, they are included only when relevant
to understanding the broader framework of manifolds and vector bundles.
Local analytic results such as the inverse function theorem or Sard’s theorem
are used but not proved, as they are standard in real analysis and do not
rely on the global structure central to this text. The style of exposition is
precise and abstract, with decent use of geometric pictures wherever it helps
with digesting the materials.

Unlike texts that front-load extensive background material before introduc-
ing manifolds and vector bundles, this book integrates the necessary tools
from analysis, topology, calculus, and linear algebra as they arise. This
approach allows readers to enter the subject more directly, encountering
foundational results in the context where they are needed. For certain re-
sults whose proofs are not central to the book’s conceptual development, I
have provided explicit references to other texts.

The book deliberately avoids extended motivational discussions and histor-
ical digressions, in favor of maintaining focus and brevity. That said, some
brief connections between topics are provided to help orient the reader.
Certainly, this book does not aim to be a complete reference on manifolds
similarly to Michael Spivak’s five-volume series on manifolds. Its main mis-
sion is to teach the essentials needed for working with manifolds and vector
bundles.

I hope this approach offers a clear and inviting path into a beautiful and
profound area of mathematics.

Looking ahead, I plan to write a direct sequel to this book covering topics
in algebraic and differential topology. The forthcoming volume will explore
singular homology, cellular homology, sheaf cohomology, Morse homology,
and their connections to the de Rham cohomology developed here. It will
also introduce characteristic classes, more specifically Chern classes, along
with other advanced topics that mark the transition from classical theory to
the frontiers of current research. In short, this volume is intended for first-
year graduate students, while the next is aimed at second-year students
looking to deepen their understanding of manifolds and related ideas.

Mohammad F. Tehrani
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Chapter 1

Continuous manifolds

Roughly speaking, a manifold is a topological space that locally resembles
Euclidean space. Globally, a manifold is constructed by patching together
countably many such local pieces, called charts. In general, manifolds are
not homeomorphic to Euclidean space or even to an open subset of it. For
example, the sphere is not homeomorphic to the plane. In the following sec-
tions, we will introduce tools for distinguishing between different manifolds.

Manifolds appear in many areas of mathematics and physics and are of-
ten equipped with additional structures — such as a metric, a holomorphic
structure, or a symplectic form — depending on the context. Here, we will
primarily focus on manifolds endowed with either a differentiable or a
holomorphic structure. Although there exist topological manifolds that do
not admit any smooth structure, the category of smooth manifolds includes
nearly all classical and well-studied examples. A differentiable structure
enables the generalization of calculus on Euclidean space to manifolds.

We begin by recalling some definitions and results from general topology;
for details, see [Mun75].

Definition 1.1. Let M be a topological space. We say that M is:
(1) Hausdorff, if any two distinct points in M can be separated by
disjoint open sets;

(2) Regular, if singleton sets are closedﬂ and for every point p € M
and any closed subset C' C M not containing p, there exist disjoint
open sets separating p and C;

1Alternatively, one may assume M is Hausdorff.

Pﬂl



2 1. Continuous manifolds

(3) Normal, if singleton sets are closed, and any two disjoint closed
subsets of M can be separated by disjoint open sets;

(4) Paracompact, if every open cover of M admits a refinement that is
locally finite—that is, each point in M has a neighborhood inter-
secting only finitely many sets in the refinement;

(5) Metrizable, if the topology on M is induced by a metric (i.e. a
distance function);

(6) Second-countable, if M has a countable basis. That is, there exists
a collection of open sets B = {U, }aez such that every open set in
M can be written as a union of sets in B, and Z is a countable
index set.

The following results relate some of these properties. First, note that second-
countability is a stronger condition than metrizability. Moreover, every
metrizable space is normal, and hence also regular and Hausdorff. The
next theorem also shows that every metrizable space is paracompact.

Theorem 1.2 (Urysohn Metrization Theorem ([Mun75], Theorem 34.1)).
Every regular and second-countable topological space is metrizable.

Theorem 1.3 (Smirnov Metrization Theorem ([Mun75], Theorem 42.1)).
A topological space M is metrizable if and only if it is Hausdorff, paracom-
pact, and locally-metrizable.

The following diagram provides a rough summary of the relationships among
these topological properties. An arrow from one property to another indi-
cates that the former implies the latter.

+ regular

metrizable —— paracompact

|

normal —— regular

second countable

Hausdorff

We are now ready to define a C? (or topological) manifold.

Definition 1.4. A topological manifold or C° manifold M is a topo-
logical space that is both Hausdorff and second-countable, and satisfies the
following condition: for every point p € M, there exists an open neighbor-
hood U 3 p and a homeomorphism ¢: U — V onto an open subset V C A,
where A is a finite-dimensional real or complex vector spac

A local homeomorphism ¢: U — V as in Definition is called a (local)
chart for M around the point p. If A =R™ or A = C™ and

o(p) = (z1(p),...,xm(p)) Vpel,

2The letter A stands for affine space.



1. Continuous manifolds 3

then the functions (x;)!", are called the (real or complex) local coordi-
nates around p associated with the chart ¢; see Figure

2 T2

Figure 1. A chart on a torus.

Remark 1.5. (1) In many standard definitions of manifolds, one of-
ten sees A = R™ rather than an abstract vector space. However,
this restriction is not always necessary. The more general form of
Definition [I.4] allows for both real and complex charts. While every
finite-dimensional real (respectively, complex) vector space is iso-
morphic to R™ (respectively, C™), such an identification depends on
a choice of basis. In many contexts, especially those lacking a pre-
ferred basis, the abstract formulation is more natural. Since linear
maps between vector spaces are smooth, this generality introduces
no complications when we later define smooth manifolds.

2) Every chart ma is a homeomorphism, and thus its inverse
y p ¥ p
oLV —U

carries the same amount of information. As a result, one can equiv-
alently define a chart as a homeomorphism from an open subset of
an affine space to an open subset of the manifold. In some sit-
uations, this latter perspective is more convenient. Throughout,
we will alternate freely between the two conventions and refer to
both ¢: U — V and ¢~ ': V — U as charts on M, without further
comment. We will adopt a similar approach when discussing local
trivializations of vector bundles in later sections.

The half-space
Hm = {(ml,l‘g,. . .,l‘m): T 2 0}
is not a manifold in the sense of Definition along its boundary points:
8Hm — {O} X Rm_l C Rm

A simple modification of Definition allows us to define a manifold M
with boundary OM. We will mostly encounter manifolds with boundary
when discussing Stokes’ Theorem.



4 1. Continuous manifolds

Definition 1.6. A topological manifold (or C° manifold) M, possibly with
boundary, is a topological space that is Hausdorff and second countable,
and satisfies the following condition: for every point p € M, there exists an
open neighborhood U > p and a homeomorphism

p: U —V

onto an open subset V' C H,,.

Figure [2| illustrates a chat map around a boundary point.

Figure 2. A boundary chart on a torus with boundary

Note that Definition [1.6| includes Definition [1.4] as a special case. Charts
whose image lies in H,, \ 0H,,, behave as before.

For all p € M, the condition ¢(p) € OH,, is independent of the choice of
chart ¢. We call the set of such points the boundary of M and denote it by
OM. The set OM is itself a topological (m — 1)-manifold without boundary.
In the upcoming statements, when we talk of a neighborhood of a boundary
point that is homeomorphic to a ball, we mean an open subset of the form

SD(U) = BT’(O) N Hy,

for some r > 0. By gluing two copies of M along OM via the identity map
on OM, we obtain a manifold without boundary. This construction can be
used to reduce certain statements about manifolds with boundary to the
case of manifolds without boundary.

It is natural to ask whether the integer m = dimg A in Definition (or
Definition can vary from chart to chart. Fortunately, the following
theorem of Brouwer shows that this is not the case: the integer m is a
topological invariant of any connectedﬂ C%-manifold M. We refer to this
integer m as the (real) dimension of M, and say that M is an m-manifold.
Complex dimension of complex manifolds will be defined as half of its real
dimension.

3Thanks to the existence of local charts, every manifold is locally path-connected. As a result,
the notions of connectedness and path-connectedness coincide for manifolds; see [Mun75], Theo-
rem 25.5].



1. Continuous manifolds 5

Theorem 1.7 (Brouwer’s Invariance of Domain Theorem [Brol2]). Let
V C R”™ be open, and let f: V—R" be an injective continuous map. Then
f(V) is open in R™ and f is a homeomorphism between V and f(V').

Exercise 1.8. Use this theorem to show that dimg A is independent of
the particular choice of chart on a connected manifold M. In other words,
charts on a connected C%-manifold must have model spaces of the same
(real) dimension.

The three conditions in Definition are logically independent: there exist
examples of topological spaces that satisfy exactly two of the three condi-
tions, but not all three.

Example 1.9. (double origin line) We construct a topological space that is
second-countable and admits local charts, but is not Hausdorff. Let

B R x {+}
C(m,4) ~ (2, ) Ve € R—{0}

with the quotient topology. In other words, M is the topological space
obtained by identifying two copies of R along R—{0} via the identity map.
It has two “zero points”, denoted 04 and 0_, which are the images of (0,+)
and (0,—) in the quotient space, respectively. Such non-Hausdorff spaces
are generally unsuitable for calculus.

Example 1.10. (long line) The so-called long line is a classical example
of a non-second-countable that is Hausdorff and admits local charts. It is
constructed by “stacking” uncountably many copies of the interval [0,1) in a
well-ordered sequence indexed by the first uncountable ordinal w; Formally,
the long line is the topological space obtained by taking the ordered set
[0,1) X wy with the lexicographic order and equipping it with the order
topology. The resulting space is locally homeomorphic to R, Hausdorff, and
connected, but it is not second-countable, and hence not a manifold in our
sense.

The second-countability condition has many important consequences. To
begin with, it follows from the Urysohn Metrization Theorem that every
manifold is metrizable. As a result, manifolds possess all the desirable topo-
logical properties listed in Definition Additionally, many constructions
on manifolds proceed in two steps. First, one defines local objects — such as
functions, vector fields, or differential forms — on individual charts, where
one can apply standard tools from calculus on open subsets of R™. Sec-
ond, one assembles these local pieces into a global structure on M. For
this second step to work, it is crucial that we can form either a locally fi-
nite or countable (and hence convergent) sum. The existence of a countable
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basis — and equivalently, the paracompactness of M — ensures that such con-
structions are feasible. In particular, every manifold admits (c.f. [Mun75),
Theorem 41.7]) a partition of unity in the following general topological sense.

For any subset Y C M, we denote the closure of Y in M by cly(Y).

Definition 1.11. Suppose M is a topological space and U := {U, }aez is an
open covering of M. A partition of unity subordinate to U is a collection
of continuous functions

{Qal Uy — [0, 1]}

satisfying the following properties:

acel

(1) The support of each function, defined by

supp(0a) = clu ({x €Ua: 0a(T) # 0})
is contained in Uy;
(2) The collection of closed sets {supp(ga)}a o7 18 locally—ﬁniteﬁ;
(3) The functions sum to one:

Zgazl.

a€el

Note that the point-wise sum in (3) is well-defined at every point z € M
due to the local finiteness in (2).

Definition 1.12. A collection of charts

A= {cpa: U, — VO‘}QGI

on a topological space is called an atlas if the domains {U,}qecr form an
open cover of M.

Combining two of the defining properties of a manifold, we obtain the fol-
lowing equivalent characterization of a continuous manifold.

Lemma 1.13. A topological space M is a manifold if and only if it is
Hausdorff and admits a countable atlas.

Proof. Suppose M admits a countable atlas
A={on: Uy — V.

Each U, is second countable because it is homeomorphic to an open subset
of an affine space (or half of it). A countable union of second countable
spaces is second countable. Therefore, M is second countable.

4That is, for every & € M, there exists a neighborhood U 3z such that U N supp(ga)#® for only
finitely many «.



1. Continuous manifolds 7

Conversely, suppose M has a countable basis
B ={Un}ni4

and can be covered by charts. Let B’ C B be the subcollection of those open
sets Uy, that are the domain of some chart map ¢, : U, — V,, (and fix one
such ¢, for every such U, ). We show that

A= {gon: U, = V,: U, GB/}

is an atlas. For every p € M, take some chart ¢: U — V such that p € U.
By the definition of basis, there is n such that p € U, C U. Therefore,
olu, : Un = o(Uy) is a chart. We conclude that U,, € B’ and

M = U U,.

UneB’

Exercise 1.14. Modifying Example let
- R x {£+}
B (xa—'_)N(l’ilv_) \V/ZL'GR—{O}
with the quotient topology. Show that M is Hausdorff. Therefore, it is a

manifold (covered by two charts). Write a continuous map f: M — R?
which is a homeomorphism onto S' C R? (with the subspace topology).

Exercise 1.15. Let M = R/Z, where Z acts by translation,
n-r=c+n, Ve eR, neZ.

(a) Show that M is a topological manifold.

(b) Define an atlas on M using the natural projection R — M.

(c) Write a continuous map f: M — R? which is a homeomorphism onto
St c R%

Exercise 1.16. Prove that every connected 1-dimensional manifold M is
homeomorphic to R or S*.

We conclude with a theorem that will be used in Section Bl to show that the
universal cover of any manifold is also a manifold.

Theorem 1.17. The fundamental group of any connected manifold M is
countable.

Proof. Fix a countable atlas

A = {Son: Un — Vn}zozl
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on M such that each V,, is an open ball (in particular, simply connected).
For any n,n’, the intersection U, N U, has at most countably many con-
nected components (since each component contains a point with rational
coordinates).

Let S be a set containing one point from each such connected component
for all n,n’. For every pair x,y € S and n such that z,y € U,, fix a path
from x to y lying entirely in U,. Let E be the (countable) set of all such
paths.

Choose a base point g € S. Any loop in M based at xg is homotopic to
a finite concatenation of paths from FE. Since the set of finite sequences
from a countable set is itself countable, it follows that w1 (M) is at most
countable. O
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Solutions to exercises

Exercise Suppose ¢: U = V C R" and ¢': U’ — V' C R™ are two
overlapping charts (i.e., U N U’ # () on a topological manifold M, with
m < n. Consider the map

oo i pUNU") — 1o (UNU') C R,
where ¢: R™ — R™ is the standard inclusion. By Brouwer’s Invariance

of Domain Theorem, this map is a homeomorphism onto its image. This
implies that m = n.

Since M is connected, any two charts can be joined by a finite chain of
overlapping charts. Therefore, all charts on M map into affine spaces of the
same fixed real dimension. ([l

Exercise For x € R, let x4 and z_ denote the images of (z,+) and
(z,—) in the quotient space M, respectively. Note that

zy = (1/z)_ for all = # 0.
Let m: R x {£} — M denote the quotient projection. We leave it to the
reader to verify that 7 is an open map.
To show that M is Hausdorff:

e For any € < 1, the points 04 and 0_ can be separated by the disjoint
open sets

m((—€,€) x {+}) and 7((—e,€) x {—}).
e For any x # 0 and € < |z|/2, the points 01 and z can be separated
by disjoint open sets
T((—e,€) x {£}) and 7((z — e,z +e€) x {£}).
Because 7 is open, the maps
pr: R — M, oi(x) =24,

define charts on M, giving a two-chart atlas (using the viewpoint of Re-

mark [L.F]2). By Lemma M is a manifold.

There are many ways to define a topological embedding f: M — R2. One
particular choice that will be generalized to spheres of all dimension in the
next lecture comes from inverse stereographic projections

2 2 -1
: M — S c R? — + .
/ 55 Tt (xQ—i—l’ l'2+1>

Check the following;:

o f(xy) = f((1/z)-), so the chart-wise defined map respects the
equivalence relation and is well-defined globally on M;
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e f is bijective onto S! = {(z,y) € R?: 22 +¢% = 1};
e f is continuous and hence a homeomorphism onto its image.

O

Exercise Similarly to the previous exercise, we leave it to the reader
to verify that the quotient projection 7: R — M is an open map. For every
p,q € M with p # ¢, there exist distinct z,y € [0,1) such that m(z) = p and
m(y) = q. Without loss of generality, assume = < y. Let

e=min ((y—2)/2, (1+z—1y)/2).
Verify that
T((z—€eax+¢€) and w((y—ey+e)
are disjoint open sets containing p and ¢, respectively. Therefore, M is
Hausdorff. For every = € R and € < 1/2, the map
(r—e,x+€ — M, y = m(y),

is a chart. The collection of these charts covers the entire M. Furthermore,
by choosing z, ¢ € Q we obtain a countable atlas. We conclude that M is a
manifold. The map

f: M — C=R? m(z) — 2™ Yz eR,

is well-defined and is a homeomorphism onto the unit circle S' c C. O

Exercise By the existence of charts and since (a,b) =Zco R, every
point p € M has a connected neighborhood U homeomorphic to R. Inclusion
defines a partial order on such neighborhoods. By the Axiom of Choice, let
U be a maximal such neighborhood and fix a chart map

p: U —=R.

If U = M, then M = R. Otherwise, since M is connected, we have cly;(U) #
U. Suppose p € cly(U) \ U.

Let ¢: U — (—1,1) be a chart map defined on an open neighborhood
U’ of p sending p to 0. Since p € cly(U) \ U, for every e > 0, the set
U! = 97 1((—¢,€)) has non-empty intersection with U. Suppose

s(UnU)=]]L
1€T
where each I; = (a;, b;) is an interval. If |Z| > 2, then there exists an interval,
say Iy, such that ag > —e and by < e. Therefore,

q=1""(ap), ¢ =y (bo) €U, C U
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For sufficiently small ¢, the image o(¢~1(Ip)) C R is an interval strictly
contained in R. Taking closure and using Hausdorfness, we conclude that one
of q or ¢’ belongs to U, which contradicts the assumption that ¢, ¢ ¢ UNU..

Therefore, we can assume |Z| = 1 or |Z| = 2. Furthermore, by the argument
above, if |Z| = 1, then
Y(VenU) = (—¢,b) or (a,e)
for some b < 0 or a > 0. Similarly, if |Z| = 2, then
P(UNU) = (—€,0) U(ase)
for some b< 0 and a>0. The condition p € clp/(U) \ U then forces a =0
and b=0.

e In the first case, i.e., when |Z| = 1, it is relatively easy to show
that there exists a chart with domain U UU/, which contradicts the
maximality of U.

e In the second case, i.e., when |Z| = 2, it is relatively easy to show
that U UU! = St Since S is connected, it must be the entire M.

O






Chapter 2

Spheres and projective
spaces

Before we proceed further, we discuss the examples of spheres and real /complex
projective spaces, which play an important role in the study of manifolds
and more general topological spaces. We will describe explicit atlases for
these manifolds and use them in future calculations.

Spheres.

For m > 0, the (unit) m-sphere S™ is defined to be the following subspace
of R™+1:

S™ = {(wo,...,xm): ixf = 1}
=0

In general, we have the following lemma about subspaces of Euclidean space
or any other manifold.

Definition 2.1. Suppose M is a C° manifold (without boundary) and Y C
M is a subset, with subspace topology. We say Y is locally graph-like if
for every p € Y, there is an open neighborhood M > U 3 p and a chart
map ¢: U = V3 x Vo € A= A" x A” such that p(Y NU) is the graph of a
continuous map f: Vi — V5. In other words,

21)  wlg) = (v1(q), v2(q) = (¢1(a), f(¢1(q))) YVgeYNU.

Lemma 2.2. Suppose M is a C° manifold (without boundary) and Y C
M is a locally graph-like subset with subspace topology. Then Y is a CY
manifold.

13
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Proof. The subspace topology on Y is automatically Hausdorff and second
countable. Thus, it remains to construct an atlas. For any p € Y, consider

a chart map o: U — V4 x Vo C A = A’ x A” as in Definition We will
show that
p1: Uy =UNY -V CA
is a homeomorphism onto its image. By Definition the map p: U —
V1 x V5 is a homeomorphism. Therefore, 1 is continuous and surjective.
Moreover, by equation , it is also injective. It remains to show that
gol_lz Vi — Uy is continuous, i.e., that ¢ is an open map. Since @ is a
homeomorphism, the sets of the form p~'(B; x Bs), with B; C V; open,
form a basis for the topology on U. Furthermore,
©1 (Y N (p_l(Bl X Bg)) = f_l(BQ) c V.

Since f is continuous, f~!(By) is open in V;. We conclude that ¢1: Uy — V4
is an open map. [l

Corollary 2.3. For m >0, S™ is a manifold of dimension m.
Proof. For each i € {0,...,m}, let

U = {(xo,...,xm): Sl <1, ;> 0} ~ B7(0) x R,

JFi
where BJ"(0) is the open ball of radius one around the origin in R™. Since
Yn ﬁf is the graph of

T = :I:(l — Zx?)l/z,
J#
Lemma [2.2] shows that S™ is a manifold (of dimension m). Let
UF = TFnS™ and Vi={(2)),c0 7. 27 <1} = B'(0) CR™.
J#

Since the collection {ﬁz.i} covers the entire R™™! we conclude that the
collection of projection maps

(22) A= {goi,i: UE — Vi, (20,...,%m) — (:Uj)#i} o

(4,%), i=0,...,m

defines an atlas on S™. g

Next, generalizing the construction from the solution to Exercise we
define a different atlas on S™ consisting of only two charts.

Let
p+ = (£1,0,...,0) € S™.
Projection maps @4 from py onto the hyperplane
A= (z9=0)=R" CR"!
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define homeomorphisms

oyr:Ugp:=8"\{p+} — A, O+ (T, X1y e oy Tn)

see Figure

Figure 1. Stereographic projection ¢4 from the north pole py =
(1,0,0) onto the xy-plane

The atlas

(2.3) A= {goi: Ut — Rm}

provides an efficient covering of the sphere and will be useful in many compu-
tations later. It is also important from the perspective of classical geometry,
as it gives a concrete realization of S™ as the one-point compactification of
R™.

Exercise 2.4. Consider
(2.4) M = {(az,y,z)€R3:x3+y3+23:1}CR3

equipped with the subspace topology. Describe an atlas on M to conclude
that it is a C° 2-manifold. Is M connected?

Real and complex projective spaces.

Definition 2.5. Let A be a vector space over the field F = R or F = C. The
projective space P(A) is the set of 1—dimensionaE| subspaces (called lines)
¢ C A

IWhen working over R, this means real dimension; when working over C, this means complex
dimension.
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Note that every line £ C A is of the form - v for some vector v € A, and two
nonzero vectors v,v’ € A\ {0} generate the same line if and only if v' = \v
for some A € F* := F \ {0}. Therefore,

AN{O
(25) p(4) = 10
where F* acts on A by scalar multiplication. Assuming A is finite-dimensional,
the quotient description (12.5)) allows us to topologize the set P(A) using the
quotient topology: if

(2.6) 7 A\ {0} = P(A)

denotes the projection map, then a subset U C P(A) is open if and only if
its pre-image 7~ (U) is open.

Exercise 2.6. If A’ C A is a linear subspace, then P(A") C P(A) is a closed
subset.

In the following, we assume A is finite-dimensional.

Lemma 2.7. If V C A is a codimension-one linear subspace, then Uy :=
P(A)\P(V) is an open subset homeomorphic to V. Furthermore, any vector
ve A\V determines a homeomorphism (i.e., a chart map)

PV : Uy = V.

Remark 2.8. The statement of Lemma highlights the value of defining
chart maps in Definition[I.4] to take values in an abstract vector space. If V' is
n-dimensional then V' = F"; however, these identifications are not canonical
and require a choice of basis (as we will do in the calculations below).

Proof of Lemma By Exercise Uy C P(A) is open. The points in
Uy correspond to lines ¢ C A which are not included in V. Every such line
is of the form
(=F (vdw)
for some unique element w = w(¢) € V; see Figure We leave it to the
reader to show that the one-to-one and surjective map
P(Vwp)* Uv — ‘/7 {— w(f)
is indeed a homeomorphism. Note that ¢(y,,) maps theline F-vto0 € V. [

Exercise 2.9. For v,v' € A\ V, find the relation between

PVw): Uy -V and PVp'): Uy = V.
Lemma 2.10. For every finite-dimensional vector space A over F = R or
C, the projective space P(A) is a manifold of dimension dimp A — 1. Here,
the dimension is understood as real dimension when F =R and as complex
dimension when F = C.
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Figure 2. Chart maps ¢(v,.), sending £ to w.

Proof. It is clear that the collection

(2.7) A= {SO(V,U): Uy — V}VCA, codima V=1, vg¢V
defines an atlas. Identifying A = F", let
Vi={(z1,...,2p) € F": 2; = 0},
and let v; = e; be the i-th standard basis vector. Then, it is straightforward
to verify that
Asa = {95 = @(ve: Ui = Uy, = Vi),
is a finite subatlas of .

It remains to verify that P(A) is Hausdorff. For any two distinct lines
0,0 € P(A), choose a hyperplane V' C A such that ¢,¢' ¢ V. Then both ¢
and ¢ lie in the open set Uy, which is homeomorphic to a Euclidean space.
Hence, they can be separated by disjoint open subsets. ([

For A = R"" and A = C*"™! (i.e., when A is identified with F"*1), the
projective spaces P(A) are denoted by RP"™ and CP", respectively. In this

case, the equivalence class of a nonzero vector (Xj, ..., X,) € F**! in
FnJrl
epn _ P {0}
F*
is written as [Xo : ...: X,]. The variables (Xo,...,X,) are called projec-

tive coordinates, but they are not functions or coordinates on FP™ in the
usual sense. However, statements such as X; = 0 or X; # 0 are meaningful.

As explained in the proof of Lemma [2.10 the spaces RP™ and CP" can be
covered by (n + 1) standard charts:

(2.8)
X;

wi: U = V3, cpi([Xo:...:Xn]):<mj:X> , fori=0,...,n,
i) i

where U; is the open subset defined by X; # 0 and V; = ]F{O’"';""’"} =~ ",
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Exercise 2.11. Prove that

(1) RP? = CP° = one point.

(2) RP! is homeomorphic to S*.

(3) CP! is homeomorphic to S2.

(4) T (RP™) = Zs for all n > 2.

(5) CP™ is simply-connected for all n > 0.
Exercise 2.12. Given a vector space A, let Gri(A) denote the set of k-
dimensional subspaces of A. This is called the Grassmann manifold.
When A is identified with R™ or C™, and the underlying field is clear from
context, one usually writes Gr(k,n) instead of Gri(A). Generalizing the con-

struction of projective space (i.e. k = 1), show that Grg(A) is a topological
manifold, Gr(k,n) can be covered by (Z) charts, and

dim Gr(k,n) = k(n — k).
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Solutions to exercises

Exercise Clearly, M is the graph of the continuous function

flay) = V1—a% -y
defined on all of R%2. Therefore, the projection map
M—>R27 (x,%z) = (xvy)a

serves as a global chart for M. We conclude that M is a manifold homeo-
morphic to R?, and hence it is connected. [l

Exercise Pre-image of P(A) \ P(A4’) in A\ {0} under the projection
map ([2.6)) is A — A’, which is open because A" C A is a closed subset. O

Exercise Suppose v' = A @ wq for some wg € V and X # 0. For any
e Uy, if
(=F -(V&®w), withweV,
then
(=F-Owa (w+w))=F-(v@ X w4+ wp)).
We conclude that
<P(V,v')(€> = )\SO(V,U) (€) — wo,
L.e., oy, is obtained from ¢(y,) by composing with a scaling and transla-
tion on V. O

Exercise [2.11} (1) If A is one-dimensional, then P(A) consists of a single
line.

(2) and (4): Every real line in R"*! is generated by a unit vector v € S”.
Furthermore, two unit vectors v, v’ € S™ generate the same line if and only
if v/ = +v. We conclude that

Sn
RP" = —
Zsy’
which yields the same quotient topology as before. For n = 1, the map
g1 . .
SN Sl, [619] — e21(9
Lo

is the desired homeomorphism. Here, [¢!] denotes the equivalence class of
¢ € 81 ¢ R? = C under the quotient. For n > 2, since S™ is simply-
connected, the projection map

S" — RP"
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is a covering map with deck transformation group Zs. We conclude that
1 (RP™) = Zs.

(3) To prove that CP! is homeomorphic to S?, we compare the standard two-
chart covering of CP! in (2.8)) with the two-chart covering of S? in (2.3). For
n =1, (2.8) shows that CP! can be covered by two charts

(2.9) pi: U=V, =C, i=0,1,
with the following properties:
e oo(UsNUy) = p1(UgNUp) = C*;
. thel so-called transition map ¢ o goalz C* —» C* is given by z —
z .
Similarly, for n =1, shows that S? can be covered by two charts
pi: Uy — Ve =R?,
with the following properties:
o i (U NU-) = (Uy NU-) =R*\ {0};
e the transition map ¢p_ o p;': R?\ {0} — R?\ {0} is
1

x1,1T9) — ————
(21, 72) x? + 22

(r1,x2).

Identifying R? with C via z = 21 + iz, we find that ¢_ o go_T_l(z) =z L

Define the maps
fro0: Up = U, froolel! (z1,22)) = [1: @1 + i),
fomt: U= = Uy o9t (21, 20)) = 21 — iz 2 1],
The calculations above show that

froolvinus = f-mtlupnu-
Therefore, these maps patch together to define a well-defined map
f: 8% — CP.

It is straightforward to verify that f is a homeomorphism. In Section {4] we
will generalize and further explain the idea behind this construction.

(5) The complement of any chart U; = C" in , say Uy, is CP"~!. Since
CP"~! c CP" has real codimension 2, any loop v C CP" can be deformed
to avoid CP"~!; that is, v is homotopic to a loop entirely contained in Up.
As Uy is simply-connected, it follows that CP" is simply-connected. O
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Exercise Similarly to Lemma[2.7} if V C A is a codimension k linear
subspace, then

Uy = {W € Gry(A): WnNV = {O}}

is an open subset. Suppose v1,...,v; € A are k linearly independent vectors
such that

A=V 4+ (v1,...,v).
Since codimyV = k, this is a direct sum decomposition. Such a collection
of k vectors determines a homeomorphism (i.e., a chart map)

P(Vor,...,05) - Uv — vE

in the following way. The points in Uy correspond to k-dimensional subspace
W C A satisfying A =V 4+ W. Every such W is the graph of a linear map

h: (v1,...,u5) = V.

Let w; = h(v;) for all i = 1,..., k. We leave it to the reader to show that
the one-to-one and surjective map

P(Vv1,...,01) Uy — Vk, W — (wl, RN wk)

is indeed a homeomorphism.

It is clear that the collection

(2.10) A= {@(wl,...,vk)i Uy — Vk}
defines an atlas on Gry(A).

Identifying A = F", for every 1 < i < ... <1, <mn, let
Vit = {(xl,...,a;n) eFf:z;,, =0V a= 1,...,k},

and let v, = e;, be the i,-th standard basis vector. Then it is straightforward
to verify that
(2.11)

Asta = {(lezk =W = Uy,

..... ik,ez‘l,---,eik)' Ulhm,lk i1,y 1, lk

is a subatlas of (2.10)) consisting of (Z) charts, and
dim Gr(k,n) = kdim(V) =k x (n — k).

.k—>v’“ }

It remains to verify that Gry(A) is Hausdorff. For any two distinct elements
W, W' € P(A), there is a codimension k subspace V such that W NV =
W' NV = {0}. Then both W and W” lie in the open set Uy, which
is homeomorphic to a Euclidean space. Hence, they can be separated by
disjoint open subsets. .






Chapter 8

Smooth and
holomorphic manifolds

We will not be able to do calculus on C° manifolds without placing ad-
ditional structure on them. For instance, extra assumptions are needed to
differentiate functions and thereby extend the notion of derivatives from cal-
culus to manifolds. More precisely, suppose M is a topological m-manifold
and f: M — R is a continuous function. Fix a chart

p:U—>V CR™
on M. Then the composition
fop VSR

is a function defined on an open subset of R, where the standard notion of
derivatives (e.g., partial derivatives) applies. In particular, we would like to
call f a smooth (i.e., C°°) function if foe~! is smooth. Similarly, if m = 2k
and we identify R?* with C*, we would like to call f: M — C holomorphic
if f o1 is holomorphic.

However, this notion of smoothness or holomorphicity depends on the choice
of chart in the following way. Suppose ¢: U’ — V' is another chart such
that U N U’ # (. Then, restricted to (U NU’) C R™, we have

foe ™t =(foyo(pop™)
where the transition map
Yo lipUNU) = p(UNU)

is a homeomorphism between open subsets of R™. If the transition map
Y o ¢~ ! is smooth with a smooth inverse, then the smoothness of f o1)~!

23
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and fop~!is equivalent on the overlap. Similarly, for f: M — C, if the tran-

sition map is holomorphic with a holomorphic inverse, then holomorphicity
is preserved across charts. The same conclusion holds for other regularity
conditions, such as being C*, analytic, etc.

Definition 3.1. Suppose
A= {ps: Uy — VQ}QGI

is an atlas for a topological manifold M. We say that A defines a C¥,
smooth, analytic, or holomorphic structure on M if the transition maps
(see Figure |1

Parsg =080 0o Vas: Va,s = Vaas

3.1
(3:-1) where V,3:=¢a(UaNUg), Va,B€Z,

are C*, smooth, analytic, or holomorphic, respectively.

-0

Y3 :\J/SOQHB

Figure 1. Transition maps.

Suppose A and B are two smooth atlases on a manifold M. If the transition
maps between every chart in A and every chart in 13 are smooth, then the
union AU B is a larger atlas that defines the same smooth structure on M.
In this case, we write A ~ B. Otherwise, A and B define different smooth
structures on the same topological manifold M. A similar notion applies for
C*, analytic, and holomorphic structures on M. It is easy to verify that the
relation ~ defines an equivalence relation on the set of atlases.

Definition 3.2. A smooth, C*, analytic, or holomorphic structure on a
topological manifold M is an equivalence class [A] of atlases such that each
atlas in the class defines a smooth, C*, analytic, or holomorphic structure
on M, respectively.

Every smooth, C*, analytic, or holomorphic structure on M has a unique
maximal atlas representing it.

Example 3.3. It is straightforward to verify that if M and N are C*,
smooth, analytic, or holomorphic manifolds, then the product manifold M x



3. Smooth and holomorphic manifolds 25

N, equipped with the product atlas, is also a manifold of the same regularity.
For instance, since S! is smooth, the k-dimensional tori 7% := (S1)* are all
smooth manifolds as well.

Remark 3.4. If M is a smooth manifold with boundary, then OM naturally
inherits a smooth structure from M. The analogous statement does not
make sense in the holomorphic category due to dimensional constraints.

Exercise 3.5. Show that the atlases on S™ and RP™ defined in Section [2I
determine smooth structures. Show that the atlas defined on CP™ deter-
mines a holomorphic structure on CP". Show that the two different atlases
on S™ constructed in Section [2] are equivalent, and thus define the same
smooth structure.

Having defined smooth and holomorphic manifolds, we can now introduce
maps between them that satisfy appropriate regularity conditions. These
include smooth maps, holomorphic maps, and other variants depending on
the chosen structure.

Definition 3.6. Suppose M and M’ are smooth (respectively, holomorphic)
manifolds, and let f: M — M’ be a continuous map. We say that f is
smooth (respectively, holomorphic) if for every pair of charts p: U — V
on M and ¢': U’ — V' on M’ from the corresponding maximal atlases, the
composition

(3.2) plofopTtip(fTHU) = V!
is a smooth (respectively, holomorphic) map between open subsets of two
affine spaces.

In particular, we define:

e A diffeomorphism as a homeomorphism f: M — M’ such that
both f and f~! are smooth.

e A biholomorphism as a homeomorphism f: M — M’ such that
both f and f~! are holomorphic.

Note that to check whether a map f: M — M’ is smooth (respectively,
holomorphic) near a point p € M, it is sufficient to verify the smoothness
(respectively, holomorphicity) of the composition in for a single chart
¢: U — V around p and a single chart ¢': U' — V' around f(p). If we re-
place p: U — V with another chart : U — V around p, the corresponding
composition becomes

Yofopl=(gofop )o(pog™').

1is smooth (respectively, holomorphic) by

1

Since the transition map ¢ o ¢~
assumption, the smoothness (respectively, holomorphicity) of ¢’ o f o ¢~
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and ¢’ o f o 7! are equivalent. The same argument applies when changing

the chart on the target manifold M’.

Exercise 3.7. Let f: M — N be a continuos map between smooth mani-
folds. Show that f is a smooth map if and only if for every smooth function
h: N — R, the composition function ho f: M — R is also smooth.

Exercise 3.8. Let f: R — R be a smooth and everywhere positive function.
Consider the graph y = f(z) of this function in xy-plane. By revolving
this graph in the zyz-space around the z-axis, we obtain M, a “surface of
revolution”. Consider the following four charts (U7, ¢y 1), (UF, @, +) for
M:

Ur=Mn{+y >0}, UF=Mn{+z>0},

with ¢y +: Ugjc — VyjE C R? defined to be the projection to xz-plane and
¢, +: UF —V: C R? defined to be the projection to xy-plane. Show that
the charts above define a smooth atlas for M such that M is diffeomorphic
to a cylinder (i.e. S* x R).

Exercise 3.9. For a,b,c,d € C, with ad — bc # 0, show that any so called
Mébius function

az+b
cz+d

f(z) =

extends to a holomorphic automorphism (i.e. a biholomorphism from a
space to itself) of CP!.

:C\ {-d/c} — C

Having discussed various notions of regularity for an atlas on a topological
manifold, it is natural and important to consider the following questions:

(1) Does every topological manifold admit at least one C! structure?

(2) For r > 1, given a maximal C" atlas A on M and r < k < oo, does
there exist a subatlas B C A that defines a C* structure on M? If
S0, is it unique?

(3) Can a topological manifold admit more than one smooth structure

(possibly even infinitely many), up to conjugation by homeomor-
phisms of M?

Before we answer these questions, let us explain the meaning and necessaity
of “up to conjugation by homeomorphisms of M” in the last question.

Given a smooth atlas A = {gpa: U, — Va}a ez on M and a homeomorphism
f: M — M, we can construct a new atlas by pulling back the charts of A
along f:

A= {gl, = a0 fi f(Ua) = Va}oer
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If f is not differentiable, the atlas A’ will generally not be compatible with
A — that is, the transition maps between charts in A and those in A’ may fail
to be smooth. Nevertheless, the homeomorphism f defines a diffeomorphism
from the smooth manifold (M, A’) to the original smooth manifold (M, .A)
in the sense of Definition In this sense, the two smooth structures are
considered equivalent.

Example 3.10. The map f: R — R, defined by f(x) = 2™ for some odd
positive integer n, is a homeomorphism. Therefore,

A={id:R—R} and A ={f:R—R}

are both single-chart atlases on R defining smooth structures (since there are
no transition maps to consider). While A # A’, themap f: (R, A") — (R, .A)
is a diffeomorphism, identifying the two smooth structures.

The answer to the first question is no in dimensions greater than 3, and yes
in dimensions 1, 2, and 3. We will not delve into the long and rich history of
this question here, but we note that in dimensions five and higher, there is a
classification of smooth, piecewise-linear, and topological structures due to
Kirby and Siebenmann [KS77|, formulated in terms of obstruction theory
and various invariants from algebraic topology. In contrast, the case of
dimension 4 is exceptionally intricate. It has been shown that there exist
uncountably many non-diffeomorphic smooth structures on R* (this answers
question 3 positively), and to this day, a full classification of smooth 4-
manifolds remains out of reach.

The answer to the second question is fully positive. Every maximal C" atlas
on a manifold M contains a unique maximal smooth subatlas. Moreover,
every maximal smooth atlas includes a unique maximal real-analytic sub-
atlas. This justifies our choice in this book to focus exclusively on smooth
and holomorphic manifolds.

We conclude this section with stating the following result on smooth parti-
tions of unity, whose proof is essentially identical to the continuous version.

Theorem 3.11. Given any smooth atlas A = {cpa: U, — Va}aeI on a
manifold M, there exists a smooth partition of unity subordinate to the open
cover {Uq }aez-

Remark 3.12. Holomorphic manifolds do not admit holomorphic partitions
of unity, since a holomorphic function that vanishes on a nonempty open
set must vanish identically. This rigidity is a hallmark of complex-analytic
geometry and is one reason why certain results in this book apply only to
smooth manifolds.
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Solutions to exercises

Exercise For the atlas (2.2) on S™, we have the following transition
maps:
e Since Uf NU;” =0 for every 1, there is no transition map.
e For i # j and ¢;,¢; € {£}, we have
i (U NUS) = Vi N {eja; > 0},
1/2
Pie; © i (T1)kts) = <($k)k;éi,j,6z’(1 - Zx%) / ) e V;n{ez; > 0},
ki
which is clearly smooth on the open half disk V; N (z; > 0).

For the two-chart atlas (2.3)) on S™, the transition map go_ocp:_l : R™\{0} —
R™ \ {0} and its inverse ¢, o ¢~ are both given by the same smooth
expression:

= (T1,...,Tm) = —5
To show that the atlases (2.3]) and (2.2)) are equivalent, by symmetry in their

definitions, it suffices to check the transition maps between ¢ and ¢; +. We
compute:

o+ 005y Vo \ {0} = R™\ clpm (V)

1
xr = (xl,...,mm) — —(xl,...,mm),
1—4/1—|z)?
. 1
prop Vo—=oW, z=(z1,...,2m) » ———(21,...,Tm).
144/1— |z

For i # 0 and ¢ = &, we have:
@y 0wl Vi = RN {ex; > 0},

1
(@) i = 1— 2o (W)k#om Em) ’
1

-1
picow, (x = (1,...,x =
9, + ( ( m)) 1 ‘$|2

(|m[2 — 1,23;1,...,2/\%,...,2:1;7,1) )

In the first two lines above, the transition maps ¢ o 1i are scalar multipli-
cations by positive smooth functions, so they and their inverses are smooth.
The third and fourth lines show that ¢4 o ‘Pz_; and their inverses are smooth
for all i # 0. We conclude that (2.3) and (2.2)) are equivalent and define the

same smooth structure on S™.
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For both RP™ and CP™, with notation as in (2.8]), the transition maps
between charts are given as follows. For every 0 < 4,5 < m with i # 7,

xp/x; if k #1,

o) _1 €T i) = iy hel"e =
230 ¢ (@) = s where o= T T

These maps are clearly smooth when the coordinates are real and holomor-
phic when the coordinates are complex. U

Exercise It is straightforward to show that the composition of smooth
maps between smooth manifolds is smooth. In particular, if f: M — N
is smooth, then for every smooth function h: N — R, the composition
ho f: M — R is also smooth.

For the converse, suppose that for every smooth function h: N — R, the
composition ho f: M — R is smooth. That is, for every chart p: U -V C
R™ (or H,,,) in the maximal smooth atlas of M, the map ho fop™1: V — R
is smooth.

Let p € M, and choose charts ¢: U — V C R™ (or H,,) around p and
¢: U — V C R around f(p) such that f(U) C U. Write 1 = (z1,...,z,),
where each z; is the i-th coordinate function of .

Since smoothness is a local property, choose a compactly supported smooth
function ¢: U — R such that p = 1 on a neighborhood of ¢ (f(p)). For each
1, define the function h; := ¢-x;, which is smooth on U and extends trivially

to all of N. Moreover, h; = x; near f(p).

Therefore, on a sufficiently small neighborhood of p, the map v o f o 1

coincides with the smooth map
(hlofogp_l,...,hnofogo_l).

This shows that ¢ o f o =1 is smooth near (p), and hence f is smooth at
p. Since p was arbitrary, f is smooth on all of M. O

Exercise Note that U NU, =0 and Uf = U, = (. For ¢,¢" € {£},
the transition maps

Pyer 0 i@, y) = (2,67 f(2)? — y?),
Pze0 (p?;i,(x, z) = (:c,gl f(q:)Z — z2)’
are clearly smooth. Therefore, these charts define a smooth atlas for M.

It is easy to check that
f:RxS"— M, (x,ew) — (m,f(x)cos&,f(m)sinﬂ),

is injective and surjective. It remains to show that f and f~! are smooth,
where the domain has the product smooth structure.
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Consider the 4-chart smooth atlas of S' C R? described in (?2.2):

i U —= Vi, 1) = (25); 1} ;
{<P,i i (0, 21) = (25) (). o1

given by projecting the upper/lower and left/right halves to the z(p- and
xr1-axes. Taking the product with id: R — R yields a 4-chart smooth atlas
on R x S1.

In terms of coordinates (z, (xg,21)), the map f is the restriction to R x S!
of the smooth automorphism

R — R, (z,20,21) = (2, f(z)z0, f(2)21).

In later chapters we will see that this implies the restriction f is a diffeomor-
phism. However, the point of this exercise is to directly verify the condition
in Definition

We compute:

@yer 0 fo(id X oe) 1w:1;1 (w,f( ) VeeR, -1 <z <1,

zef(z)y/1—2%), VzeR, 0 <z <1,

@yer o fo(id X p1.) )N, 20 :(m,ef M) Ve €R, 0<ée'zg <1,
@z 0 fo(id x 1) (2, 20) = (2, f(2)70), Ve eR, =1 <xzy < 1.

The other cases are vacuous. Clearly, all these maps are smooth with smooth
inverses. g

@rer0 fo(id x o) Hw,21) =

Exercise @. Recall from the solution to Exercise m that CP! can be
covered by two charts

(33) §01U1—>‘/1:(C, 1=20,1,
with the following properties:

. (po(U[) M Ul) = ng(Uo N Ul) = C*%;
1

e the transition map ¢j o 4,00_1: C* - C*isgiven by z — w = 27,
where z is the coordinate on V) and w is the coordinate on V;.

This shows that CP! = Uy U {[0 : 1]} is a one-point compactification of

Up = C. Since [0 : 1] corresponds to z = % = 00, it is common to write

CP! = C U {00}, allowing z to take values in C as well as oco.

Under the chart map ¢g: Uy — C on both domain and target, the Mobius
transformation in Exercise is the restriction to Up \ {[c : —d]} of the
well-defined function

f: Pt =P [(Xo: X1] = [dXo + X1 : bXo + aXy].
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In other words, under the chart ¢g: Uy — C, the function f is defined for
p € CP'\ {[c: —d],[0: 1]}, and we extend f to the missing points by
f(le:—d)) =[0:1 € CP' and f([0:1]) =[c:a] € CP".

We must show that the resulting map is a holomorphic map between holo-
morphic manifolds.

Remark 3.13. More generally, any real or complex linear map f: A — A’
between real or complex affine spaces induces a well-defined map
f:P(A) = P(A),

since f maps lines to lines. The same principle applies to Grassmannians.
For instance, a Mobius transformation corresponds to an invertible linear

map
X a b|[X
2 2 1 1
e Lol )
In the complex case, the claim is that f: P(A) — P(A’) is a holomorphic
map. In particular, if f: A — A is invertible, then f: P(4) — P(A4) is a
holomorphic automorphism. We prove this general claim.

Identifying A with C"*!, with coordinates (Xo, ..., X,), and A’ with C™*1,
with coordinates (Yp,...,Y,,), f has the form

Xo Yo Xo
X \% aip -+ Qin X
f: cntl ., omtl 1 N 1 _ . . . 1
M 9 . .
) ) (1/ ... (1/ )
Xn Ym m0 mn Xn
With notation as in (2.8), let ¢P: UP — VP denote the charts on the
domain for ¢ = 0,...,n, and QOJT: U]T — VjT the charts on the target for
7 =0,...,m. Then, for every ¢ and j, we have

Qs + Zk# sk T

ji + D ogzi AjkTk

The right-hand side is a ratio of two linear functions in the variables xy.
Therefore, this expression defines a holomorphic function on an open subset
of VP. Changing the identifications A = C"™! and A’ = C™*! corre-
sponds to composing f with additional linear transformations represented
by invertible matrices. Since composition with holomorphic maps preserves
holomorphicity, the property of f: P(A) — P(A’) being holomorphic is in-
dependent of the chosen bases used in these calculations. O

@f o fo(eP)  ((r)kri) = ((Us)ss), Ys =






Chapter 4

Manifolds as quilted
spaces

Definitions and begin with a given topological space M and
require the existence of an atlas whose transition maps satisfy certain regu-
larity conditions.

However, in many situations the space M is not explicitly specified in ad-
vance. Instead, we construct it by gluing together countably many affine
open sets using transition maps that are homeomorphisms, diffeomorphisms,
or biholomorphisms. In this scenario, the resulting quotient space is, by
construction, locally modeled on affine charts and second-countable. What
remains is to verify that the space is Hausdorff in order to conclude that it
is a manifold.

In other words, we may think of M as a quilted quotient space formed by
gluing a countable collection of open subsets (or simpler manifolds) via a
prescribed class of transition maps. For many applications, this construction
is either necessary or significantly more efficient. In particular, this approach
eliminates the need to explicitly write chart maps and allows us to work
solely with the transition maps.

More precisely, let {V, }ne7 be a countable collection of open subsets of R™,
H,,, C™, or some abstract real or complex vector space. For each pair of
indices o, 3 € Z, suppose there exist open subsets V, 3 C V,, and Vg, C Vj
together with transition maps

Parsp

Va V,B,a ’

—1
PB—=a=Parsp



34 4. Manifolds as quilted spaces

which are, depending on the context, homeomorphisms, diffeomorphisms, or
biholomorphisms.

Assume further that:
(1) Voo =V, for all @ € Z, and @qrya = idy,;
(2) For all a, B, € Z, we have

-1
Vogy = Vans = Vasg M Vary = Vas Neoa,5(Vas)i
this condition ensures that the domains and targets of both sides
of the cocycle condition below match;

(3) On V, gy, the transition maps satisfy the (compatibility) cocycle
condition:

Parsy = Pprsy © PP+

Under these assumptions, the identification
x~y & € Vapg YE Ve, Y= pass(x)
defines an equivalence relation on the disjoint union topological space M =
Hoez Va-
Let
(4.1) M =M/ ~
denote the resulting quotient topological space.

Lemma 4.1. With notation as above, the space M is a (C°, smooth, or
holomorphic, depending on the type of transition maps) manifold if and only
if it is Hausdorff. Conversely, any countable atlas on a manifold presents it

as a quotient space of the form (4.1)).

Proof. For each a € Z, let po: Vo — M denote the composition of the
inclusion V, — M with the quotient projection map w: M — M. The
collection

(4.2) A= {goa: Va = Uy o= (Vi) C M}&g

is a countable atlas (in the sense of Remark [1.5]2). By Lemma M is a
manifold if and only if it is Hausdorff. The converse direction is immediate
from how the transition maps of an atlas are defined in Definition (3.1

O

Example 4.2. Example [I.9 of the double origin line is a non-Hausdorff
instance of this construction, where

T={+}, V,=V. =R, Vi, =V =R o,z =idg-.

In contrast, Exercise constructs S' by gluing the same collection of
open sets using the different transition map ¢4+ (x) = 1/z.
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As we mentioned earlier, we can consider a more general version of
where each V,, is itself a manifold. In this case, it is also useful to relax the
first condition before (4.1)) and allow V,, o to be a proper subset of V;,. Then
Yarsq should be an involution; i.e.,

Par—sa © Pau—a = id.

For instance, consider the following example with Z = {1}, where
Vi=8"%(0,3), Vii1=S"x((0,1)U(2,3)),
and
pro1(pt) = (p.2+18) Y (p,t) € ST x (0,1).
Then the quotient manifold
M=Vi/~, (p,t) ~ p151(p, 1),
is diffeomorphic to the 2-torus S! x S*.

Such constructions are common in surgery theory of manifolds. For example,
it is well-known (e.g. see [Rol90, Ch. 9]) that any 3-manifold can be ob-
tained from S® by surgery along a link (i.e., a disjoint union of knots). Such
a surgery removes a neighborhood of the link and glues it back differently
by modifying the transition map.

If two manifolds M and M’ are presented as in by

M = H Va/ ~ T~y <& TE Va,ﬁa Yy e Vﬂ,aa Yy= QOaHB(x)v
a€cl

M= [ Vi)~ e~y & 2€Vig y€Viw y=pams (),
o'el’
then a map f: M — M’ corresponds to a collection of maps
fasa: Vasor TV — Viy VaceZ o e,
such that

900/»—>ﬁ’ (¢] fw_n)/ = f,B'—)ﬁ, @) <Pw—>ﬂ V a, ﬁ € I, O[/, B/ S Z/,

on Vo.or N Vo N Vo 5. Here, V.o is the intersection of V, and (V)
under the canonical chart maps in (4.2)).






Chapter 5

Discrete quotients

In general, there are multiple ways to construct more complicated manifolds
from basic ones. These include:
(1) Taking products;

(2) Gluing several pieces along overlapping regions, as described in the
previous section;

(3) Taking quotients by group actions;

(4) Considering level sets of functions.

In this lecture, we study quotients by discrete group actions.

Suppose M is a (continuous, smooth, or holomorphic) manifold and G is a
discrete group (probably finite). By a (right-) action of G on M we mean
a function

v: M xG— M, (x,9) — x-g:=1(x,9) € M

such that ¢(—,g): M — M is continuous, smooth, or holomorphic for all
g€ @G, depending on the context, and

P(x,9192) = Y(P(x,91),92) VYV g1.92€ G, x €M,
vz, 1) ==z Ve M.

In particular, each vy == 9(—,g): M — M should be a homeomorphism,
diffeomorphism, or biholomorphism, depending on the context.

Let
M/y or M/G := M/ ~, x~y<y=uz-g for some g € G,

denote the quotient space with the quotient topology.
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Theorem 5.1. With notation as above, suppose G is a discrete group that
acts freely and properly on M in the following sense:

o freely: for every point x € M the stabilizer subgroup G, = {g €
G: x-g=u} is the trivial subgroup;
e properly: for every compact subset K C M, the subset Gx = {g €
G: (K- -g)NK #0} is finite.
Then the smooth manifold structure on M induces a unique C°, smooth, or
holomorphic manifold structure on the quotient M /G such that
e the quotient projection map w: M — M/G is continuous, smooth,
or holomorphic, respectively;
e and f: M/G — N is continuous, smooth, or holomorphic, if and

only if f om is continuous, smooth, or holomorphic, respectively.

Remark 5.2. If G is finite, then the action is automatically proper. One
only needs to check that it is free. If M is compact, then the action is proper
if and only if G is finite.

Remark 5.3. If = and y belong to the same orbit of the G-action, i.e.,
y = x-g for some g € G, then the isotropy groups G, and G, are conjugate:

Gy = g 1GLg.
Example 5.4. Recall from the solution to Exercisethat RP™ = S™ /Zs,
where Zs acts by x — —x on §™ C R™*L
Example 5.5. The action of Z? on R? by translations,
R? x Z? — R?, (z,y) x (m,n) = (x +m,y +n),

is smooth, free, and proper. Taking the product of the space in Example
with itself, we see that the quotient manifold R?/Z? is the 2-dimensional
torus S! x S1.

In the holomorphic category, there are many holomorphically non-equivalent
ways to define an action of Z? on C = R2. For each 7 in the upper half-
plane

(5.1) H ={re€C:Im(r) >0},
define an action of Z? on C by
Y7 Cx 72 — C, z X (m,n) — z+m+nt.
Then, T2 := C/4" is a 2-torus with a holomorphic structure (called an

elliptic curve). Since R? is the universal covering space of T?, every elliptic
curve is of the form T2 for some 7 € H. The following exercise characterizes
holomorphic structures on T2 up to isomorphism.
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Exercise 5.6. With notation as in Example show that T2 is biholo-
morphic to TE/ if and only if

ar +b

cT +d

(5.2) r=A-1:=
for some

A= |:g Z:| S SL(Q,Z) = {A S M2><2(Z): det(A) = 1}

Exercise 5.7. In Exercise the formula defines a left action of the
discrete group SL(2,Z) on H. This action clearly descends to an action of
PSL(2,7Z) = SL(2,Z)/{+xI}. Find the isotropy groups of various values of 7
to show that the quotient is not naturally a manifold. This quotient space
parametrizes elliptic curves.

Exercise 5.8. Reducing the group in Exercise 5.7}, let
Iy C PSL(2,Z), Tp={A€cPSL(2,Z): A=1I, mod2}.

Show that the action of I's on H is free. (The quotient H/I's is a sphere
with three punctures.)

Exercise 5.9. Let p and ¢ be coprime integers and consider the action of
Z, on §3 C R* = C? by diffeomorphisms:

(21, 22) — (e2m/pzl, e2mq“’22> )

Show that the action is free to conclude that the quotient space L(p,q) :=
S3/7Z, is a 3-dimensional smooth manifold (called the lens space). What
is the fundamental group of L(p, q)?

Exercise 5.10. Give an example of a free action that is not proper.

Proof of Theorem It is easy to see that the quotient projection map
7 is open. For every p € M, choose an open neighborhood U > p such that
U is the domain of a chart ¢: U — V in the maximal atlas. Pick a smaller
open set U’ C U such that p € U’ and clp;(U’) is compact in U.
Since the action is proper, there are at most finitely many elements in G,
say g1, ..., gk, such that b, (U") NU’ # (. Moreover, since 9, (p) # p for
all j and M is Hausdorff, there exist open neighborhoods U; of 9, (p) and
U; C U’ of p such that

u,nU J/ = 0.
Let

k
U" = (), U)n (U cU.
j=1
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It is straightforward to check that ¢4(U”) NU"” = for all g € G\ {e} and
p € U”. Therefore, every point p admits a chart ¢’ = p|gr: U — V" =
©(U") such that
7: U — m(U")
is a homeomorphism. Thus,
(p// 07_‘_—1: 7_[_(U//) N V//

is a chart around 7(p) € M/G. The set of such charts defines the induced
atlas on M/G.

That M /G is Hausdorff and second countable follows from the corresponding
properties of M, together with the fact established above that 7 is locally a
homeomorphism.

The transition maps between charts on M /G are compositions of the maps
1y with the transition maps of charts on M. Therefore, if M is smooth and
G acts by diffeomorphisms, then the transition maps of the induced atlas
on M/G are smooth as well. Similarly, if M is holomorphic and G acts by
biholomorphisms, then the transition maps of the induced atlas on M /G are
holomorphic.

The two bullet-point properties follow directly from our definition of the
induced atlas on M/G. O

Every manifold M is the quotient of its universal cover M by the group
of deck transformations. The following result can be viewed as a sort of
converse to Theorem in this specific setting.

Theorem 5.11. The universal cover M of any continuous, smooth, or holo-
morphic connected manifold is itself a continuous, smooth, or holomorphic
manifold, respectively, such that the covering map m: M —s M is the quo-
tient projection with respect to the action of m (M) as the group of deck
transformations.

Proof. By Theorem the fundamental group 71 (M) is countable. Re-
call that, topologically, M is the space of paths v from a fixed base point
po € M to any point p € M, considered up to homotopy. That is, a point in
M corresponds to the homotopy class [v] of such a path, and the covering
map is defined by 7([v]) = p.

Let

A={py: U, — Vn}neN
be a countable atlas on M such that each V,, is a ball (and hence simply

connected). For each n, choose a point p,, € U,, and fix a preimage p, € M
such that 7(p,) = pn.
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Then, 71 (Uy) consists of open sets {Up,a Yaer, () satisfying:
e U, is the component containing p,,

e the restriction 7: Uy, o — U, is a homeomorphism for each «,
e U, = U, 1 - aunder the right-action v, : M — M of a,
e and U, o NU, o =0 for a # /.

Therefore,

./2(: {(Pn om: UmOé — Vn}neN, acm (M)

is a countable atlas on (the Hausdorff space) M. Tt is straightforward to

check that the transition maps of A coincide with those of A, and thus inherit
the same level of regularity (i.e., continuous, smooth, or holomorphic). O

Remark 5.12. For an arbitrary discrete group action as in Theorem
the fundamental groups of M and M /G are related by a short exact sequence
of groups:

1l —mM) —m(M/G) —G—1.
In this case, the universal cover of M/G is the same as the universal cover
of M, and the group G can be identified with a quotient of 71 (M /G) by the
normal subgroup 7 (M).
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Solutions to exercises

Exercise Suppose
2 2
f: TT’ — ’]TT
is a biholomorphism. Since C is the universal cover of both complex tori,

there is a canonical biholomorphic lift

f:(C—HC

of f satisfying f(0) = 0 (recall that such a lift is unique once we specify
a pre-image of a base point). The map f induces a group isomorphism
m1(f): Z? — 72 between the fundamental groups. Suppose

f(rYy=ar +b, f(l)=cr+d
for some a,b,c,d € Z. Then,
f(m7’ +n) =m(ar+b)+n(ct+d) = (ma+nc)r+(mb+nd)  Vm,n € Z.
The only holomorphic functions f: C —s C with linear growth and f(O) =0

are linear maps; that is, f(z) = Az for some A € C*. This implies

, _ar+b
et +d
The same argument applies in the reverse direction, implying that
a b
a=[e

is invertible. Therefore, det(A) = £1. Since both 7 and 7’ lie in the upper
half-plane #, we conclude that det(4) = +1. The converse follows by
reversing the above steps.

Remark 5.13. Since T2 = ']I'% = it suffices to consider parameters 7 € H.

Note that integer matrices A with det(4) = —1 send H to its complex
conjugate —H.

O

Exercise Suppose
at +b

ct+d

for some matrix

d

Then 7 is a root of the quadratic polynomial

e’ +(d—a)T —b=0,

A= [‘CL b} € SL(2,2).
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.

N|H
NI H

Figure 1. Fundamental domain of the action of SL(2,Z) on H.

ie.,

T =

a—d+Va®+d?—2ad+4bc  a—d+\/tr(4)? -4
2c B 2c '

Since we care about the class of A in PSL(2,Z), we may assume tr(A) > 0.

If tr(A) > 2, then 7 is real and does not lie in H. So suppose a + d < 2.

Since a and d are integers, we must have a + d=0or a +d = 1.

(1) Suppose d = —a: Then

L
r=2 l, with  —be =1+ a’.
c

Again, since we care about the class of A in PSL(2,Z), we may assume ¢ > 0
and b < 0.

Ifa=0,wegetT=1i€ H and

Zy = PSL(2,7Z); = <S = [g _01} >

Claim 5.14. If a # 0, then T = =% € H lies in the PSL(2,Z)-orbit of i.
Therefore, by Remark[5.3, its isotropy group is conjugate to that of i.

Proof. It is well known (e.g. see [Sil94), Ch. I]) that SL(2,Z) is generated

by
11 0 —1
O P (R

and every point in H lies in the orbit of a point in the fundamental domain
D={reH:—L1<Re(r) <3, || >1};

see Figure [T}

Since trace is invariant under conjugation, is in the orbit of another

point £2 with —1/2 < ‘;—,/ < 1/2 and 1/’ > /3/2. This forces ¢ = 1 and

C
a’ = 0, which gives us i. O

i+a
c




44 5. Discrete quotients

(2) Suppose a +d = 1: Then

20 — 1+ i
T:a—\/§17 with a®>—a+1= —be.
2c
If a=0and ¢ > 0, we get
-1 3i
= :_;fleH

and
Zs = PSL(2,Z), = <A = [(1) _11] > .

Note that y is a cubic root of 1.

Claim 5.15. For other values of a and c,

2a —1 3i
T = a—m cH
2c
lies in the PSL(2,7Z)-orbit of u. Therefore, by Remark its isotropy group
is conjugate to that of .

Proof. The proof is similar to the previous claim.

Exercise With notation as in the previous exercise, note that the
matrices S and A are not in I's. Therefore, the stabilizer of every point is
trivial, and the action is free. Since the action is also proper, the quotient
H/T's is a smooth manifold of real dimension two.

A fundamental domain for the action of I'y consists of six copies of the stan-
dard fundamental domain for PSL(2,Z) (c.f. [SG69] p. 442]). By drawing
this domain and identifying the edges appropriately, one can show that the
quotient space is a sphere with three punctures. O

Exercise By Remark we only need to verify that the action is
free. Since p and ¢ are coprime, both €2™/P and e2™4/P have order p. Thus,
since at least one of z; or 2y is nonzero in S3, the action is free.

Since S? is simply-connected, it follows from Remark that 71 (L(p, q))
Zp.

(Y

Exercise The action of Z on S' C C by

619 n = ei(9+n90)’

where 60y /27 is irrational is free but not proper; see Remark ([
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Tangent bundle; part I

For any open subset V' of a real or complex affine space A, and for every
point p € V, the tangent space T,V = T, A consists of all possible directions
in which one can move starting from p. In other words, 7,V is simply a
translated copy of the model vector space A, with the origin shifted to p
— a notion made precise by the linear structure of A. The union of these
tangent spaces forms the tangent bundle of V', which is simply the product
space

TV := | | T,V =V x A
peV

If v: (—e,e) — V is a differentiable parametrized curve with «(0) = p, then
the derivative

7(0) = limw eET,V~A

t—0

is the tangent vector to v at p.

Note that this expression makes sense because the linear structure on A
allows us to subtract points and rescale vectors. In this section, we gener-
alize these ideas to define the tangent bundle of smooth and holomorphic
manifolds — a key step in extending calculus to curved (i.e., non-flat) spaces.

Remark 6.1. If V C H,, is an open set, we define TV = V x R as
before. The tangent space at each point is still the full vector space R™. At
boundary points, however, not every vector can be realized as the tangent
vector to a smooth path. This subtlety is typical for all manifolds with
boundary.

45
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Remark 6.2. On a complex vector space C", or an open subset thereof, a
complex curve is the image of a holomorphic map

7 A=CY o y(0) =p,
where A C C is an open disk centered at 0 of some radius € > 0. The
complex tangent vector to -y is defined by the same formula:

4(0) = lim 1(z) =2(0) T,C" = C".

z—0 z

When considered as real manifolds, holomorphic curves are examples of
Riemann surfaces.

There are at least two standard ways to define the tangent bundle of a
smooth or holomorphic manifold:

e The first is a coordinate-free approach that interprets tangent vec-
tors (and vector fields) as derivations — that is, as linear operators
acting on smooth (or holomorphic) functions.

e The second is a more concrete construction that builds the tangent
bundle by gluing together local data from charts, in the spirit of
Section Ml

The second approach is direct and well-suited for calculations. It is also
essential for proving that the tangent bundle naturally inherits a smooth or
holomorphic structure, depending on the context.

The first approach, though less computationally friendly, is equally impor-
tant, as it gives a global, intrinsic definition of the tangent bundle. It will
become especially valuable later, when we introduce the Lie derivative.

We begin with the second (chart-based) construction and then move on to
the operator-based approach in the next lecture, which will require a more
in-depth discussion.

Definition 6.3. Suppose
M = H Vo) ~
a€l

is a smooth or holomorphic manifold, as in (4.1]), obtained by gluing affine
pieces {Vo, C An}aer along overlap regions {V, g}la ger via the identifica-
tions

r~y & TE€Vap YEVia Y= Pasp(T).
Then the tangent bundle of M is defined as the quotient space
(6.1) TM =[] (Va x Aa)/ ~,

o€l
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obtained by gluing the pieces {T'V, = V, x A, }aez along their overlaps
{TVap = Vs X Aataper

using the identifications

(:E,U) S Va,ﬁ X Aon

(y,w) € Vgo x Ag,

y = @a*—)ﬁ(x%

w = DxSDQHﬂ(U)u

(z,0) ~ (yw) &

where dypasp € Isom(Aq, Ag) is the derivative of v at = in the usual
calculus sense:

. xr+tv) — x
dyparss(v) = lim 2227 ( t) Prpl2)

When A, = R™, for all a € Z, the derivative dy@qp € GL(m,R) is simply
the Jacobian matrix of partial derivatives. Similarly, if A, = C™ and @3
is holomorphic, then dypa—s € GL(m,C) is the matrix of holomorphic
partial derivatives.

It follows directly from the construction that the local projection maps
o TV, — V, are compatible on overlaps and glue to a global surjective
projection

m: TM — M.

Lemma 6.4. For any triple o, 8,7 € I, the following cocycle condition
holds on Vo gy X Ag:

d‘Pw—w = d‘P,Br—w © d@ou—)ﬁ-

Moreover, the space TM is automatically Hausdorff. Therefore, depending
on the context, the quotient space T M in is a smooth or holomorphic
manifold, and 7 is a smooth or holomorphic map onto M. For each point
p € M, the fiber

(6.2) T,M = 7 (p)
is called the tangent space to M at p; it is naturally a vector space and is

(non-canonically) isomorphic to R™ or C™, depending on the context..

Proof. The cocycle condition on derivatives is simply the chain rule. For
every x € V,, the fiber 7 !(z) = {x} x A, is a vector space identified with
Ay If 2 € V,, is equivalent to y € Vg, then

deParsp: {2} X Aa — {y} x Ap

is a linear isomorphism (because ¢q, g is a diffcomorphism). Hence, it
preserves the linear structure but not the specific identification with A,. We
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conclude that the isomorphism classes 1), M of the fibers in local pieces have
well-defined vector space structures. However, the particular identification
of each T, M with R™ or C™ depends on the choice of a basis.

For two distinct elements u,u’ € TM, either 7(u) # w(u'), or they are
different vectors in the same tangent space T,,M. In either case, since both
M and A, are Hausdorfl, they can clearly be separated by disjoint open
sets. U

Remark 6.5. There is a mild subtlety with Definition [6.3] as it a priori
depends on the choice of an atlas on M. Recall from Lemma that
the quotient presentations (4.1)) are in one-to-one correspondence with pairs
(M, A) consisting of a manifold and a countable atlas on it. However, it
is straightforward to show that the manifold 7'M associated to such a pair
(M, A) via depends only on M.

Given two such atlases A and A’, we can construct a common refinement
by taking intersections of their domains. Therefore, it suffices to prove the
claim when A’ is a refinement of A, and every chart in A’ is either a sub-chart
of some chart in A, or disjoint from it. In this case, it is easy to construct an
isomorphism from the quotient space associated to A’ to the one associated
to A. We leave the details to the reader. Later in this chapter, we introduce
a coordinate-free definition of the tangent bundle and show that it agrees
with the construction above. This also confirms that T'M is intrinsically
associated to the manifold M itself, independent of the atlas used.

Remark 6.6. In the construction of TM above, we started from a quilted
space interpretation of M as in and similarly built 7'M by gluing local
pieces, each of which is the tangent space of an affine open subset. Given
a manifold M and an atlas A = {¢: Uy, — V,}, the tangent bundle TM
is still described as a quilted space obtained by gluing the local pieces TV,
along the overlaps using the transition functions pn.—g = @go ¢! and their
derivatives. Therefore, in what follows, TU,, should be understood either as
TV, or via the coordinate-free description in terms of derivations discussed
below.

Definition 6.7. A vector field on M is a section of the projection map
w: TM — M — that is, a map £: M — T'M such that mo& = idps. In other
words, £ assigns to each point x € M a vector &(x) € T, M.

Locally, any section &, of TV, = V, x Ay, — V, is given by the graph of a
function

¢al(z) = (2, Xo(2)), Xo: Vo — A,
This section is continuous, smooth, or holomorphic depending on whether
the function X, has the corresponding regularity.



6. Tangent bundle; part 1 49

Globally, a section £ corresponds to a collection of functions {Xa: Vo —
Aa}a T that are compatible on overlaps with respect to the transition func-
tions, in the sense that

(6.3)  X3(y) = deparsp(Xal(x)) for all o, 8 € Z and y = pasp(x).

Depending on the context, a section is said to be continuous, smooth, or
holomorphic if it is locally of that type.

Remark 6.8. Every smooth manifold admits a plethora of smooth vec-
tor fields. One can start with an arbitrary collection of local vector fields
on charts and patch them together to define a global vector field using a
partition of unity. On the other hand, for closed (i.e., compact without
boundary) holomorphic manifolds, the space of holomorphic vector fields is
finite-dimensional and may even be trivial. This reflects, in part, the fact
that holomorphic partitions of unity do not exist.

Exercise 6.9. Recall from Section Pl and the solution to Exercise 3.5] that
RP™ (respectively, CP™) can be covered by n + 1 charts ¢;: U; — V; = R"
(respectively, C"), for j = 0,...,n, with transition maps given by

xp/xy ik #1,

= w.oo Y (x ) = ;. Where =
Pirsj = Pj 0 P; (( k)k#l) (yk)lﬁé]’ Yk 1/,7;]- if kK =1.

Does the vector field
Xo(z) = 2102, + -+ + 20y,

defined on Vp extend smoothly (respectively, holomorphically) to a vector
field on all of RP™ (respectively, CP™)? If so, what is its expression on the
other charts V;? (Here, 0,, denotes the constant coordinate vector field
corresponding to the i-th standard basis vector e; of R™ or C™.)

Exercise 6.10. Recall that the 2-sphere S? C R? can be covered by two
charts o1 : Uy — Vi = R2, with transition map
1

P Vio =RI\{0} = Vo, =R*\ {0}, @ = (z1,22) W(QTI»@)-
Which of the following vector fields on V. extend smoothly to all of S2?
210z, + 2204,, 210z, — X204,, 220z, — £104,.
Exercise 6.11. Show that the map ¢: R3 — R3 defined by
(70('177 Y, Z) = (Qy’ -, —xyY + Z)

is a diffeomorphism. Let X = 20, + yd, be a vector field on R3. If the
pushforward dp(X) is expressed in coordinates as

dp(X) = ady + bd, + 0.,
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find the coefficient functions a, b, and c.

Exercise 6.12. Show that the complex vector space of holomorphic vector
fields on CP! is 3-dimensional and find a basis.

Remark 6.13. In a future exercise, you will learn to prove that the com-
plex vector space of holomorphic vector fields on any complex 2-torus is
1-dimensional. For closed Riemann surfaces (i.e., closed holomorphic mani-
folds of complex dimension 1) of genus g > 1, one can show that there are
no nontrivial holomorphic vector fields. We do not yet have the tools to
prove this.
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Solutions to exercises

Exercise We compute the expression for Xy in terms of the coordinates
on Vj, for each j =1,...,n, over the overlap region

Vio = {(ur)ki: Yo # 0},

and check whether this expression extends smoothly or holomorphically to
the entire V;. Since Up is dense in projective space, such an extension,
if it exists, would be unique. To do this, we compute the pushforward
dpo—j(Xo). We have

d‘POl—U XO sz d‘PO»—m ml Z Z ayk
=1

The partial derivatives are given by

1/x; ifi=k+#0,
—ay /2 itk #0,i =7,
Oy . ) .
9 0 ifk=£0,i#k,j7,
‘ ~1/2% itk =0,i=j,
0 if k=0,i#j.

Therefore,

Oy 0yi " dyo
dporsj(Xo) = Z i gL, Oy, + Z ”“’jaT;j Oy, + ;wzaxl Dy,

1#3,0 1#£3,0 =
T; T; 1 1
= ;Zayi_Zﬁayi_;ayo:_;ayo:_yoayo
i#5,0 77 i#5,0 7 J J

It is clear that this final expression extends smoothly (or holomorphically)
to the entirety of V;, depending on context. Thus, the local vector field
Xo on Vp, together with the local vector fields X; = —yy 0, on V; for all
j =1,...,n, are compatible on overlaps and define a global vector field &£
on projective space. [l

Exercise Let y = (y1, y2) denote the coordinates on V_. It is always
good practice to distinguish between the coordinates on the domain and those
on the target, since in computing the pushforward we eventually need to
express coefficients with respect to the target coordinates.

Since

1
(Y1,92) = — (71, 22),
1

2
r] + x5
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we compute

d(p+._>_— 8y2/6:n1 8y2/8x2 - 2

_ |0y1/0x1 Oy1/0xs 1 3 — 12 —2x119
T z]d [ “2z1me 2 — 23]

We find that

1
dp s (2102, + 120s,) :W

| —27122 w%—x% To

R T
|z|? | —22 —Y2]’

1 x% —x% —25[71.752:| [ T ]

M2 2
T5 — T —2:51:132} [:1:1}

dser,_), (:Elaxl — 1'28:):2) :W __25[;13;2 1,‘% — x% —I2

1 [—23+ 3223
24 | 23 — 3woa? |
1 x% — :L'% —2x1$2} [ To ]

dp s (2205, — 110,) =73
O (2205, — 104,) |x‘4 __2;51:32 x%—x% —I1

RN
|z|2 [—21 —y1]

The first equation shows that the local vector field 10, + 205, on Vi
matches the local vector field —y;0,, — y20,, on V_. Together they define
a global vector field on S? that vanishes at two antipodal points — one a
source (where vectors point outward) and the other a sink (where vectors
point inward).

The third equation shows that the local vector field x90,, — 10, on V4
matches the local vector field y20,, — y10y, on V_. These together define a
global vector field on S? that also vanishes at two antipodal points. This
vector field corresponds to rotation around the axis passing through those
points.

In the second equation, we also note:

i [_xklg + 3331.7)%:| _ ’y‘—2 |:_yf + 3y1y%:|
z|* | @3 — 3xpat ys — 3y2yi |’

and ask whether the rational functions

y1(3y5 — vi) y2(y5 — 3yi)
2 2 and 2 2
Y1+ Y3 Y1 Ty



Solutions to exercises 53

admit continuous or smooth extensions to the origin y = (0,0). In polar
coordinates, we have

y1(3y3 — yi) 5
s Z2f —rcos(f)(4sin“(0) — 1),
. (0)(asin(6) ~ 1)

2 2
-3
7?]2@22 le) = —rsin(6)(4cos®(f) — 1).

Y1 + 3

Thus, the vector field
|y‘—2 |:_y% + 3y1y%:|
Y3 — 3y2u/7

extends continuously to the origin » = 0 by the zero vector. However, for
instance,
9 <3y§y1 - y?) _ Gyiyaly® — 6y3yr + 24097

= = 8sin(#) cos(h)?,
yi + 93 ly|t (6) cos(®)

which does not extend continuously to the origin. We conclude that the
local vector field x10,, + 220,, on V4 defines a continuous vector field on
all of S2, but the extension fails to be C'! at one point.

)

O
Exercise For the sake of clarity, let us denote the target coordinates
by (¢,9,3). Then,
(®,9,3) = (2y, =z, —xy + 2),
so that
)

(et 8
(IL’,y,Z)—( 07273 2)

Therefore, ¢ is a diffeomorphism. We have

0 o,  [or, Oy 9 O, Oy,
dap(xax + yay) = x{ax@ + &ca‘) + 8338?’} +y {8y8; + 8y80 + 8y83
= 10 + 90, + 190;.
Switching the notation back from (z,1,3) to (z,vy,2), we get

a(z,y,z) =z, b(x,y,2)=y, cz,y,2)=2zy.
O

Exercise [6.120 Recall from the solution to Exercise 2.11] that CP! can be
covered by two copies of C, Vj = C and V; = C, with the following gluing
data:

o Vp1,Vip=Cr

e the transition map g1 : C* — C* is given by z +— w = 27!, where
z is the coordinate on Vj and w is the coordinate on Vj.
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Therefore, a holomorphic vector field on CP! is given by a collection of two
local holomorphic vector fields f(z)0, and g(w)d,, on Vp and Vi, respectively,
such that
9(w)0w = dos1(f(2)0z).
We have
dpos1(f(2)0:) = f(2) dpos1(82) = —f(2)2 200

Therefore, the compatibility condition becomes

—2%g(z7") = f(2).
Since f and g are holomorphic functions on the entire plane, they have
everywhere convergent Taylor series:

FE) =Y an gw) =3 b
n=0 n=0

Using these expressions, the compatibility equation reads

o0 [e.9]
— Z 22" = Z anz".
n=0 n=0
We conclude that both f(z) and g(w) are quadratic polynomials and

ap = —by, a1 =-b1, ax= —by.

Hence, the complex vector space of holomorphic vector fields on CP!' is
3-dimensional and has basis 9., 20, 220,.
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Tangent bundle; part 11

In this lecture, we explore the identification of tangent spaces and vector
fields with corresponding spaces of derivations.

For every open subset V' of an affine space A (or of H,,), let C°°(V, R) denote
the space of smooth real-valued functions on V. Every vector field X on V
defines an R-linear operator

Dx: C*(V,R) —» C*(V,R)
by the formula
Fla+X) — f(z)

Dx(f) = X - f == df(X) = lim

t—0 t
In local coordinates (z1,..., &), if X = > 7" a;(z) O, then
i=1 Z i=1 Ori

While the limit above does not make sense on abstract manifolds, the notion
of a “derivation” provides an intrinsic generalization. We will later prove
that there is a one-to-one correspondence between derivations and vector
fields in the sense of Definition [6.7

Definition 7.1. Let M be a smooth manifold. Denote by C°°(M,R) the
space of smooth functions M — R. A derivation on M is an R-linear map

D:C*(M,R) — C*(M,R)
satisfying the Leibniz rule:
D(fg) = fD(9) +gD(f)  V/fgeCT(MR).
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Similarly, if M is a holomorphic manifold, let CP'(M, C) denote the space
of holomorphic functions M — C. A holomorphic derivation on M is a
C-linear map

D: C™Y(M,C) — C"Y(M,C)
also satisfying the Leibniz rule. We denote the space of smooth and holo-
morphic derivations by Derce (M) and Deryo (M), respectively.

Remark 7.2. For closed holomorphic manifolds, the space CP°'(M, C) con-
sists only of constant functions. As a result, Derpo (M) is trivial and not an
interesting object to study.

Definition 7.3. Let M be a smooth manifold. Two smooth functions
f:U — R and g: U' — R, defined on neighborhoods of p € M, are said
to have the same germ at p if they agree on some smaller neighborhood
u'cuntU.

Similarly, if M is a holomorphic manifold, two holomorphic functions f: U —

C and g: U’ — C have the same germ at p if they coincide on some neigh-
borhood U”" c UNU".

For any p € M, having the same germ is an equivalence relation on the set
of smooth (or holomorphic) functions defined near p. Each equivalence class
is called the germ of a smooth (or holomorphic) function at p. The set of
all such germs is denoted by Cp°(M,R) or CII}OI(M ,C), respectively. These
are rings under point-wise addition and multiplication. The operations are
well-defined because representative functions can always be restricted to a
common domain without affecting the germ. The property of vanishing at
a point is well-defined for germs of functions at that point. In both the
smooth and holomorphic cases, we denote by I, the ideal in Cp° (M,R) or
C’I}}Ol(M , C) consisting of germs of functions that vanish at p.

Remark 7.4. In the holomorphic case, if f and g have the same germ at
p, and U and U’ are connected, then there exists a holomorphic function on
the union U U U’ that restricts to f on U and to g on U’. In other words,
every holomorphic function on a connected domain is uniquely determined
by its germ at any point. Thus, the situation is much more rigid than in the
smooth case.

Definition 7.5. Let M be a smooth manifold. A derivation at p € M is
an R-linear map
D: C*(M,R) — R
satisfying the Leibniz rule:
D(fg) = f(p)D(9) +9(p)D(f)  Vf,g€ Cl(MR).

We denote the space of such derivations by Dercos (M, p).
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Similarly, if M is a holomorphic manifold, a holomorphic derivation at
p is a C-linear map

D: C}°'(M,C) = C
satisfying the Leibniz rule. The space of such derivations is denoted by
Derpol (M, p).

Theorem 7.6. (i) For every point p € M, there are canonical isomorphisms
of vector spaces

Tp,M = Der, (M, p) = (Ip/ng)*a
where x denotes either C*° or hol, depending on whether M is a smooth or
holomorphic manifold.

(ii) If M is smooth, there is C°°(M,R)-module isomorphism between the
space of smooth vector fields on M and Dercoe (M).

Remark 7.7. A statement analogous to Theorem [7.6](ii) holds for holo-
morphic manifolds; however, the proof given below does not extend to this
setting, as holomorphic manifolds do not admit compactly supported func-
tions. In algebraic geometry, too, the analogue of the quotient (1,,/ Ig)* plays
the role of the tangent space at a point; c.f [Har77, Ch. I1.8]

Proof. Part (i).

Claim A. For every derivation D on M and every constant function ¢, we
have D(c) = 0. The same holds for derivations at a point p and the germ of
a constant function ¢ at p.

Proof of Claim A. By the Leibniz rule,
D(1)=D(1-1)=D(1)+ D(1).

Therefore, D(1) = 0. By R-linearity (or C-linearity), we have D(c)
eD(1) = 0.

oo

Claim B. Every D € Der, (M, p) vanishes on Ig.

Proof of Claim B. The ideal Ig consists of real or complex linear combi-
nations of products of elements in I,,. So it suffices to show that D(fg) =0
for all f,g € I,. By the Leibniz rule,

D(fg) = f(p)D(g) + g(p)D(f) = 0.
0

Conclusion I. By Claim B, every derivation D at p descends to a well-
defined linear map

D: I,/I; — R or C,
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depending on the context. Furthermore, by Claim A, D is uniquely deter-
mined by its action on I,. That is, we obtain a canonical injective linear
map

Der, (M, p) — (I,/12)*.

Conversely, any linear map on I,/ Ig lifts to a derivation at p. Hence, we
obtain a canonical isomorphism

Der*(Mv p) = (Ip/Ig)*

Claim C. Every v € T,,M in the sense of (6.2]) naturally defines a derivation
D, at p, giving a linear map

Tp,M — Der,(M,p).

Proof of Claim C. Let ¢: U — V be a chart around p, sending p to
0 € V. Then, by definition, v corresponds to a vector in TyV. For any
smooth or holomorphic function f defined on a neighborhood of p, define

Dy(f) = tim 27 D(E) = (Fo o™ H(0)

t—0 t

This limit exists by smoothness or holomorphicity of f, and D, satisfies the
Leibniz rule. O

Remark 7.8. The assignment v — D, depends on the choice of chart,
but different charts yield the same operator D, by the chain rule and the
definition of T),M.

Claim D. Suppose U is an open neighborhood of p and ¢: U — B.(0) C R™
(or C™) is a chart (in the smooth or holomorphic atlas of M) with ¢(p) = 0.
Then for every function f defined near p,

(7.1) foe ™ (@1, . xm) = f(p) + D migi(x),
i=1

where the functions g; are smooth or holomorphic (depending on context),
and

_O(fop™)

Ba:i (0)

9i(0)

Proof of Claim D. In the holomorphic case, the result follows directly
from the Taylor expansion. We give the proof in the smooth case.
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For x € B(0), by the Fundamental Theorem of Calculus (first equality) and
the chain rule (second), we have

“10N —1/0) — 17 —1
fou (@)~ fop <o>—/ (f oo\ (ta)) dt
0

Define

1 -1
gi(x)—/ M(tm)dt fori=1,...,m.
0 Ox;

Each g; is smooth, and the formula (7.1)) holds. Moreover,

1 o —1 o -1
w0) = [ M2 a0 )

Conclusion II. Applying any derivation D at p to (|7.1]), we get

m ol
p(f) =S M2 ) 0) pay.

ox;
i=1 v

Here, we treat the i-th coordinate x; as function from U to R or C. Let
a; = D(z;) € R or C, and define

m
v = Zaiaxi e TyV.
i=1
Then D,(f) = D(f) for every f in C5°(M,R) or Cp°'(M,C), depending on
context. This gives an inverse

m
(7.2) Der,(M,p) — T,M, D> D(:)0s,
i=1
to the linear map in Claim C. Therefore, we obtain a canonical isomorphism

T, M = Der,(M,p).

These steps complete the proof of part (i) of Theorem

For part (ii), in one direction, we show that every D € Dergee (M) induces
a derivation D), at each point p € M. By part (i), D) is equal to D, for
some v(p) € T,M. Thus, the collection {v(p)}pem defines a vector field &
on M. Moreover, it follows from that the coefficients of £ in any chart
are smooth; hence, £ is a smooth vector field.
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Suppose f is a smooth function defined on an open set U containing p.
Choose an open subset U’ C U such that p € U’ and cly;U’ C U is compact.
Then there exists a compactly supported smooth function ¢o: U — [0, 1] such
that o|p» = 1. The function of can be extended by zero to all of M and
agrees with f in a neighborhood of p, so it defines the same germ at p as f.
We define the induced derivation at p by

Dy(f) = (D(ef)) (D),

which satisfies the Leibniz rule at p and is well-defined.

In the other direction, given a vector field £ as defined in Definition [6.7], it
corresponds to a collection of local vector fields {Xa: Vo — Aa}a T that
are compatible on overlaps with respect to the transition functions, in the
sense that

X5(Yy) = Dyparsp(Xa(x)) for all o, 8 € Z and y = pasp(x).

Similarly, every smooth function f: M — R is represented by a compatible
collection of functions { fa:Va— R}a T in the sense that
fo=fs0¢ass foralla,BeT.
Define
foa=Xo- fa for all o € 7.

It follows from the chain rule that the collection {f; Vo = R}qer is also
compatible, and thus defines a global smooth function f: M — R. We
define the derivation associated to & by

De(f) = f,
as desired.
It is easy to verify that Dg¢ = gD¢. Therefore, the map
g — D£
define a C*°(M, R)-module isomorphism between the space of smooth vector
fields on M and Derge (M).
O
Exercise 7.9. Every open set U C M of a smooth manifold M is itself

a smooth manifold. Therefore, Definition applies to U. Show that if
U C U’ are open subsets of M, then there is a canonical restriction map

DeI'Coo(U,) — DeI'Coo (U)
For every pair of open subsets U; and Us, suppose D; € Derces (Uy) and

Dy € Dergee(Usz) have the same restriction to Uy N Us. Show that there
exists D € Dercee (Uy U Us) such that D|y, = D; for i =1,2.
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Definition 7.10. Given a smooth manifold M and two derivations D1, Dy €
Dergoe (M), their commutator is the operator

(D1, Ds): C®(M,R) —s C>(M, R),
(D1, Do](f) = D1(Da(f)) — D2(D1(f)) V¥ f € C™(M,R).

Lemma 7.11. For all D1,Dy € Dergee (M), the commutator [Dy, Da] is
also a derivation on M.

Proof. The commutator of two R-linear maps is R-linear. We must verify
the Leibniz rule. We compute:

[D1, Do](fg) = D1(D2(fg)) — D2(D1(f9g))

= D1(fD2(g) + gD2(f)) — D2(fD1(g) + gD1(f))

= fD1(D2(9)) + D1(f)D2(9) + D1(g9)D2(f) + gD1(D2(f))

— Da(f)D1(g) — fD2(D1(g)) — D2(9)D1(f) — gD2(D1(f))
= f(D1(D2(g)) — D2(D1(9))) + g(D1(Da(f)) — D2(D1(f)))
= f[D1, D2)(9) + g[D1, D2](f).

This confirms that [Dy, Do satisfies the Leibniz rule. O
Corollary 7.12. For every pair of smooth vector fields (,€ on M, there

exists a vector field [(,&] on M, called the Lie bracket of ( and ¢, such
that

(8- f=C (& f)—€-(¢C-f) VYV [feCTDMR).
Proof. This follows from the lemma above and Theorem (ii). O

Exercise 7.13. In local coordinates (z1,.. .,z ), suppose

m

X1 = Zai(x) 0z, and Xo= Zbl(m) 0.
i=1

i=1
Compute the coefficients of the expansion of the Lie bracket [Xi, X»] in
terms of the functions a;(x) and b;(x).

Exercise 7.14. Let
n n
X = inﬁyi and Xy = Zyl@xi
i=1 i=1

be vector fields on R?" with coordinates (z1,...,%n,¥1,...,Yn). Compute
[X1, Xo].
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Solutions to exercises

Exercise Starting with any D € Dercee(U’), by Theorem [7.6}(ii),
there is a vector field £ on U’ such that D(f) =& - f for all f € C°(U',R).
Define D[ € Derge (U) to be the derivation corresponding to the restricted
vector field &|y.

Remark 7.15. A direct description of the restriction D[y is possible but
takes longer to describe, because not every f € C°°(U,R) extends smoothly
to U’. In order to directly define D|y by its action on f, we can describe
the output function

Dly(f)=g

as follows. For every point p € U, choose a bump function ¢ supported in
U that is equal to 1 near p and such that of extends smoothly to U’. Then
define g(p) to be the value of D(of) at p. With this definition, one must
check that ¢ is independent of the choice of ¢ and that it satisfies the Leibniz
rule. The approach used above via vector fields is clearly simpler.

If &1 and &, are the vector fields corresponding to Dy and Dy, then &1|y,nu, =
&|u,nu,- Therefore, they patch together to define a vector field £ on Uy UUs,
which determines a derivation D on U; U Uy such that Dy, = D;. U

Exercise Since partial derivatives commute, we have

Also, it is easy to show that

[f X1, Xo] = f[Xq, Xo] = (X2 f) X1, (X1, fXo] = f[Xy, Xo]+ (X1 f) Xo.
Therefore,

> ai(@) 0r, Y bi(w) a] =30 |ail@) 0y by () O,

=1 =1 =1 j=1

U 8() 8ai
:;; aiajaxj ja.’bjaxz)

UL 1 da;
;(;aja i oy | O
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Exercise Similarly to the previous exercise, we have

DIEDD SOTHED ) Sl ETTN
i=1 j=1

i=1 j=1







Chapter 8

Regular level sets

In this lecture, we define and study the smooth (respectively, holomorphic)
derivative

df : TM — TM'
of a smooth (respectively, holomorphic) map f: M — M’, which opens up
many possibilities for doing interesting things with manifolds. The derivative

df: TM — TM'

is a lift of f that, depending on the context, maps the fiber T),M to Tf(p)M’
by a real or complex linear map, for every point p € M.

Consider smooth or holomorphic atlases

A= {goa: U, —V, C Aa}aEZ and A’ = {gpo/: Ué/ — VO'/ C Al@l/}a’EZ’

on M and M’, respectively. From the perspective of Section @, the tangent
bundle T'M is constructed by gluing together the local models TV, = V,, x A,
via transition maps

Va,g X Aa — Va o X Ag, (z,v) — (gpaﬁﬁ(m),ngoaHg(v)).

The construction of T'M’ is similar. Also, from this point of view, a map
f: M — M’ corresponds to a collection of maps

Jasa: Vo C Vo — Vi VaeI, o el
satisfying the compatibility condition
(8.1) Parspr © famsar = fosp 0P Va,8€Z, o8 €T
see Section 4] The derivative df is then given by a collection of maps
(82)  dfasar: TVt = Vipr X Aq — Viy x AL, VaceZ o e,

65
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where each df,, .o is the usual derivative in the calculus sense:

dfoa—)o/(xa U) = (y = fal—>a'(x)a 'LU),
w = lim far—>a’(x + tU) - far—)a’ (Il?)
t—0 t
When Ay, =R™ and A), = R™ | the derivative dy fu. o is represented by an
m' x m matrix of partial derivatives. If instead A, = C™, A/, = C™, and
farsar 18 holomorphic, then dy fo, s i @ matrix in M, «,, (C) consisting of
holomorphic partial derivatives.

Applying the chain rule to equation (8.1 gives
dparspr © dfarsar = df gy pr © dParsp Va,Bel, o, €T

This shows that the collection of local maps in ({8.2)) is compatible with the
transition maps of TM and T'M’, and therefore defines a global derivative
map

e A,

df : TM — TM'
satisfying the properties described in the first paragraph.

Moving to the derivation perspective of Section [7], a vector v € T, M corre-
sponds to a derivation
D: CIC)’O(M,]R) — R.

To define dy,f(v) € Ty M', we describe the corresponding derivation D’
acting on germs of smooth functions h: U" — R at f(p). Define

D'(h)=D(hof) YheCF, (M R).

It is straightforward to verify that D’ satisfies the Leibniz rule and is indeed
a derivation. We leave it to the reader to verify that the two definitions are
equivalent under the correspondence of Theorem [7.6} ().

For every smooth map or holomorphic map f: M — N, since
dpf: TpM — Tf(p)N
is a linear map, the quantity
rank, f == rank(dpf: T,M — Tf(p)N) < dim M,dim N

is well-defined and plays an important role in classifying different types of
maps.

Definition 8.1. For every smooth or holomorphic map f: M — N, we say:

e fis an immersion if d, f is injective for all p € M (this requires
dim M < dim N);
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e f is a submersion if d,f is surjective for all p € M (this requires
dim M > dim N);

e f has constant rank if rank, f = r for all p € M and some r > 0;

e f is an embedding if f is an immersion and a homeomorphism
onto its image;

The first two are special cases of the third, corresponding to r = dim M and
r = dim N, respectively.

Remark 8.2. Note that rank, f is upper semicontinuous in p, meaning that
if rank, f = r, then rank, f > r for all ¢ in a sufficiently small neighborhood
of p. This follows from the fact that in local coordinates, the matrix of
partial derivatives varies smoothly with p. If rank,f = r, there exists an
r X r minor of the Jacobian matrix at p with nonzero determinant. Since
being nonzero is an open condition, that determinant remains nonzero in a
neighborhood of p.

In particular, if the derivative is full rank at a point p, it remains full rank
on a neighborhood of p:

(i) If d,f is injective at some p € M, then f is an immersion in a
neighborhood of p.

(ii) If d,f is surjective at some p € M, then f is a submersion in a
neighborhood of p.

Definition 8.3. We say ¢ € N is a regular value if d, f is surjective for
all p € f~1(q). If ¢ is not a regular value, we say q is a critical value.

Before discussing various cases and the importance of regular values, let
us define the notion of submanifold that corresponds to embeddings (see
Exercise 8.8 ).

Definition 8.4. Given a manifold N and a maximal atlas A of some reg-
ularity type, we say that a subset M C N is a submanifold if for every
point p € M, there exists a chart p: U — V C A around p in A such that

eUNM)=VnA
for some affine subspace A’ C A.

Lemma 8.5. (i) If N is smooth or holomorphic and M C N is a sub-
manifold (with respect to the maximal atlas of the smooth or holomorphic
structure), then M inherits a smooth or holomorphic structure, respectively.
(ii) If N1, Ny are smooth or holomorphic, M; C N; are submanifolds (with
respect to the maximal atlases of the smooth or holomorphic structures), and
f: N1 — Ny is smooth or holomorphic such that f|y, maps into Ma, then
the restriction f|nr, : M1 — My is also smooth or holomorphic, respectively.
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Proof. Part (i). By definition, the charts defining the induced smooth
or holomorphic structure on M are the restrictions to M of those charts

p: U — V C A on N for which (U N M) = VN A" for some affine
subspace A’ C A. Given two such charts,

(p,;:UZ‘—>V;‘CAZ', i=1,2,
the transition map between the induced charts on M is the restriction

-1 . /
¥2° ¥ AlNVig ‘/1,2 N Al — V2,1 N AIQ

Since the map

P09 Vig — Vo
is smooth or holomorphic by assumption, its restriction to any affine sub-
space is also smooth or holomorphic.

Part (ii). This part is similar: given charts
QOZ'ZUi—>V;CAi, 1 =1,2,

on N;, the composition g o f o gpl_l is smooth or holomorphic, and we are
restricting it to an affine subspace of the domain. Such a restriction remains
smooth or holomorphic. ([l

Remark 8.6. Lemma [8.5] will be very useful in examples. For instance, in
the solution to Exercise the map f is the restriction to R x St of the
smooth automorphism

R — R, (z,20,21) = (2, f(z)z0, f(2)21).

Therefore, once we know that R x S' is a smooth submanifold of R, one
can immediately conclude that f is smooth.

The result that allows us to characterize constant rank maps — especially
immersions and submersions — is the Constant Rank Theorem stated below.

Theorem 8.7 (Constant Rank Theorem). Suppose f: M — N is a smooth
or holomorphic map of constant rank r. Then, for every p € M, there exist
charts
p1: Uy — V1 C Ay around p on M

and

po: Uy — Vo C Ay around f(p) on N
such that the map <p20fo<p1_1 18 the restriction of a linear map L: Ay — As
of rank r.

We will discuss the proof of the Constant Rank Theorem in Section [10] and
explore some of its powerful applications throughout the remainder of this
one.
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Exercise 8.8. Use the Constant Rank Theorem to show that M C N is a
smooth submanifold if and only if it is the image of an embedding.

Lemma 8.9. Suppose f: M — N is a smooth or holomorphic map and q €
N is a regular value. Then the level set Y = f~1(q) is a smooth or holomor-
phic submanifold of M, respectively. Furthermore, dimY = dim M —dim N
and

T,Y =ker(dyf: TyM — Ty, N) VpeY.

Proof. By Remark f is a submersion on an open neighborhood U of Y.
Since rank, f = dim N for all p € U, the Constant Rank Theorem (applied
to f|u) implies that for every p € Y, there exist charts

p1: Uy — V4 C A1 around p, po: Uy — Vo C Ay around g,

with ¢1(p) = 0 and p2(q) = 0, such that the map po ofogpl_1 is the restriction
of a surjective linear map L: Ay — As. Therefore,
w1 (Y NUy) =ker(L) N Vi,

This shows that every point p € Y admits a chart as in Definition with
A" = ker(L). The last two observations also follow from the fact that the
induced chart on Y takes values in the affine subspace ker(L). O

Theorem is a powerful tool for constructing interesting manifolds as
submanifolds of simpler ones like R™, fulfilling item 4 in the introductory
paragraph of Section 5| Here’s an example, with many more to be discussed
in the exercises.

Example 8.10. The m-dimensional unit sphere S™ arises as the level set
gm — f_l(l) C Rm-i-l

of the smooth function

f: R™ S R, x:(xo,...,xm)HZx?.
Its differential is given by

m
df =2 Z ZTj d.ﬂ?i,

i=0
where for each € R™*! the map dz;: T,R™! — Tr)R = R is the
linear function that sends 9;, to 1 and 9;; to 0 for all j # i.
In general, for a smooth function f: M — R, a point ¢ € R is a regular value
if and only if d,f # 0 for all p € f~!(qg). In this example, the only point
where df vanishes is the origin, which does not lie on S™. We conclude that
S™ is a regular level set and inherits a smooth manifold structure from R™*1.
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It is easy to check that this agrees with the smooth structure described in
Section 2

Exercise 8.11. Show that the matrix groups O(n), SU(n), and SL(n,R)
are smooth manifolds. What is the dimension of each? Show that SU(2) is
diffeomorphic to S3.

Exercise 8.12. Provide a smooth embedding of S™ x S™ into R™*"+1,

Exercise 8.13. Show that the map
fR3\ {0} — RS, f(x,y,2) = (zy,yz, 2z, 22 — %, 2% + 2 + 22 = 1)
is an immersion. Use f to construct an embedding RP? — R%.
Exercise 8.14. For a > b > 0, show that the surface
M ={(z,y,2) eR®| (r —a)® + 22 = b*}
is diffeomorphic to a 2-torus. Here, r? = 2% + y2.

Exercise 8.15. For every 4 x 2 matrix A and 1 <i < j <4, let A;; denote

the 2 x 2 minor of A corresponding to the i-th and j-th rows, and define
f(A) = (det(Ai2), ..., det(Aszq)) € RO

Use f to construct an embedding (called the Pliicker embedding) of the

Grassmannian Gra(R?*) into RIPS.

Exercise 8.16. Over R or C, we define an elliptic curve C' to be the solution
set of a cubic equation

(y* = 2° + az +b) C R? or C?,
where a and b are real or complex, depending on the context. Find con-

ditions on P under which C is a smooth manifold. In the complex case,
determine whether the closure of C' in CP? is also a (compact) manifold.
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Solutions to exercises

Exercise If M C N is a smooth submanifold, then the inclusion map
t: M — N is an embedding.

Conversely, suppose M is the image of an embedding f: M’ — N. By the
Constant Rank Theorem, for every p € M’, there exist charts
p1: Uy — V4 C A7 around p on M,
and
po: Uy — Vo C Ay around f(p) on N,

such that the map po 0 f o cpfl is the restriction of an injective linear map
L: Ay — A,, and it is a homeomorphism onto its image.

Let A" = L(A;). The fact that f is a homeomorphism onto its image implies
that

w2(M NUz) =Von A,
i.e., every point f(p) € M admits a chart as in Definition O

Exercise We have SL(n,R) = det (1), where
det: Myyn(R) 2 R" — R

is the determinant function. Since det is a polynomial in the matrix entries,
it is smooth. To show that 1 is a regular value, it suffices to show that
dadet # 0 for all A € SL(n,R).

Consider the curve ~(t) = €' A through A. Then,

d t _ d nt _ nt
o det(e"A) = o (€™ det(A)) = ne™ det(A).

At ¢t = 0, this derivative is n - det(A) = n # 0, since det(A) = 1. Therefore,
dadet # 0 for all A € SL(n,R), and so 1 is a regular value.

We have
O(n) = {A € Mysn(R): ATA = In}.

Thus, O(n) = fﬁl(In), where
F1 Mpsn(R) 2 R — MM (R) = RP(n+1)/2

nxn

is the map A — AT A into the space of symmetric n x n matrices. By the
product rule, the derivative

daf: TaMyxn(R) = Mpxn(R) — Tpa)y M50 (R) = MY (R)
is given by

daf(B) = ATB+ BTA = (ATB) + (ATB)T.
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Given A € O(n) and any symmetric matrix C, let
1
B=-AC.
2

Since A~! = AT we have d4f(B) = C. Therefore, daf is surjective for all
A € O(n), so I, is a regular value.

We have
SU(n) = {A €Un): det A= 1}, U(n) = {A € Myxn(C): ATA = In},

where At = A" is the Hermitian transpose. First, U(n) is the preimage
Un) = £ (1)
under the smooth map
f: Myxn(C) — Herm(n), A ATA,

where Herm(n) C M, x»(C) denotes the real vector space of Hermitian ma-
trices. The proof that I,, is a regular value of f is very similar to the case
of O(n).

Furthermore, since det: M,,x,(C) — C is smooth, it restricts to a smooth
map det: U(n) — S C C. We aim to show that 1 is a regular value of the
latter, i.e., d4 det # 0 for all A € U(n).

By Jacobi’s formula for the derivative of the determinant, we have
dadet(B) = det(A)tr(A™'B) VA e U(n).
By the second statement in Lemma
TaU(n) = {B € M,xn(C): ATB+ (A'B)" = 0}.

Choose a skew-Hermitian matrix D such that tr(D) =i, and let B = AD.
Then, for A € SU(n),

dadet(B)=icT1S'=R-icC.

Therefore, 1 is a regular value of the determinant function on U(n), and
SU(n) is a smooth real codimension-one submanifold of U(n).

Remark 8.17. One can obtain SU(n) as a level set in one shot by consid-
ering the map

fi Mypsn(C) — Herm(n) x C, A (ATA, det(A)).

However, (I,,,1) is not a regular value, since f is a constant rank map of
rank

r = dimg (Herm(n) x C) — 1.
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The action of SU(2) on C2? preserves the unit sphere S C C2. For every
(a,b) € 3 C C?, the matrix
a —b
A_[b a]

lies in SU(2), and its action on S* sends the point (1,0) to (a,b). Thus, the
action of SU(2) on S3 is transitive.

It remains to show that the stabilizer (isotropy group) of this action is trivial.
By transitivity, it suffices to check the stabilizer at the point (1,0). Suppose

A H _ [(1)] A= [i Z] €SU(),

Then ¢ = 1 and ¢ = 0. Since A is unitary with determinant 1, these
conditions imply b=0and d =1, so A = Is.

We conclude that the action is free and transitive, so SU(2) 2 S? as smooth
manifolds. More precisely, every matrix in SU(2) is of the form

a —b
A_[b a]
with (a,b) € S3. O

Exercise With the standard embeddings
b 8™ — R™ and 4y ST — R
the product embedding
1 X 191 8™ x S —s RTTNA2

lands in the sphere S™*"*1(1/2) c R™"*2 of radius /2. However, the
image of ¢1 X t9 does not cover the whole sphere; for instance, it misses the
point p = (v/2,0,...,0).

Stereographic projection from p identifies S™+"+1(1/2) \ {p} with R™+n+L,
Composing this projection with the product embedding gives the desired

embedding of S™ x S™ into R™*"+1, O
Exercise [8.13]
We have

Y T 0

0 z Y

dayf=12 0 =
2¢ -2y O
2¢ 2y 2z

If zyz # 0, then the top 3 x 3 minor is invertible, so d(; ) f is full rank.

m7ZJ7Z:
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If x = 0, then
y O 0
0 =z Y
doyf=17z 0 0
0 -2y 0
0 2y 2z
If y # 0, the minor
y 0 0
0 =z y
0 —2y 0
is full rank. If y = 0 and z # 0, the minor
0 z O
z 0 0
0 0 2z

is full rank.

The case d(; ) f is similar by symmetry. Finally, we consider

Y z 0
0 0 v
dayof =10 0 x|,
2¢ 2y O
2¢ 2y O
and we may assume z,¥y # 0, in which case the minor
0 0 =
2¢ -2y 0
2 2y O

is full rank. We conclude that f is an immersion. Since f is defined on R?

and f|g> maps into R? (because 22 + y? + 22 — 1 = 0), the restriction
f‘SQ: S2 —>R47 (.%',y,Z) = (xy,yz,zx,:cQ—y2)

is also an immersion.

Note that f(x,y,2) = f(—x,—y, —z), and since immersion is a local prop-

erty, f|g2 descends to an immersion

f:RP? = §%/7y — R

For compact manifolds M, to show that f: M — N is an embedding, it
suffices to prove that it is a one-to-one immersion. Thus, it remains to show
that

flgz: 8% - R?

is 2-to-1 in order to conclude that f: RP?2 — R? is one-to-one.
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Suppose
(xyv Yz, zx, .’132 - y2) = ((l, b7 C, d)v
and assume abc # 0. Then we can solve:

ac b
1'2 = 7 y2 = ia z
b c a
So (z,y, z) is determined by (a, b, c) up to an overall sign. Choosing one of
the two possible signs for z uniquely determines y and z.

o _ be

If exactly one of x,y, z is zero, then exactly two of a, b, c are zero. If exactly
two of x,y,z are zero, then all of a, b, c are zero. In each case, fixing the
sign of one nonzero coordinate determines the others uniquely. Thus, f|g2
is 2-to-1, and f is an embedding. [l

Exercise The equation is written in cylindrical coordinates (r, 0, 2)
and is independent of #. In each fixed #-plane, the equation (r—a)?+ 22 = b
describes a circle of radius b. Therefore, the surface M is diffeomorphic to
St x St

More precisely, in Euclidean coordinates, the map

h: S'x St — R3, (e &) — <(a+bcos @) cos b, (a+bcosp)sinb, bsincp)

is a one-to-one immersion (hence an embedding) into R3, whose image is
the surface M.
(]

Exercise Every plane V' C R* is the span of two linearly independent
(column) vectors vy, ve. Putting them together, we obtain a 4 X 2 matrix
A = A(v1,v9). Different bases (v1,v2) of V are related by the right action
of GL(2,R) on A. Therefore,

Gra(R*) = {4 € Myy2(R): rank(A4) = 2} /GL(2, R).
The function f: Myx2(R) — RS descends to a well-defined function
f: Gra(RY) — RP?,
[A] — [det(A12) : det(As3) : det(Ars) : det(Aaz) : det(Agq) : det(Asq)],
where [A] denotes the class of A in the quotient.

We aim to show that f is an embedding, i.e., a one-to-one immersion. For
every A, there exist indices ¢ < j such that det(A;;) # 0. Therefore, there
is a unique representative of [A] such that A;; = I,. By symmetry, we may
assume (7,7) = (1,2); the other cases are similar. If A9 = Iy, then

1 0 a b
A_[Olcd]’
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and
f(A)=[1:c:d:—a:—b:ad—bc].

In the terminology of (2.8)) and ([2.11)):

e [A] belongs to the domain of the chart ¢12: Ujg — Via & Maoyo(R)
on Gra(R*);

e f([A]) lies in the domain of the chart o1: U3 — V4 on RP5;

e and the composition ¢ o f o gof21: Msy2(R) — R® is the smooth
embedding

a b
A= L d} — (¢, d,a,b,ad — be).

Since ?_1(U1) is precisely Uja, we conclude that f is a smooth embedding,.

Remark 8.18. The construction above also works over C and generalizes
to define embeddings

Grp(R") — RP(D-1 and  Gry(C) — CP(D)-1.

O

Exercise The real or complex curve C is the O-level set of the function
P(z,y) = y* — (2* + az + b). We have

dP = 2y dy — (32* + a) dx.
Therefore, 0 is a critical value if and only if there is zg such that
3t3+a=0 and )+ axo+b=0;
in other words, xop must be a double (or triple) root of 2% + az + b. Numer-

ically, the equations above imply

9 a 2a
=—= — b=0=

3b 3b\?
r9g=—— =3 —— = —a = 27b% + 4a® = 0.
2a 2a

Conversely, if 27b% + 4a® = 0, it is easy to check that zo = —% is a double
(or triple) root. (If @ = b =0, we get a triple root at zo = 0).

If 2 is a double root, then the equation has the form y? = (z — z0)%(z — \)
for some A # xg. Therefore,

e if we are working over R and A\ < xg, then near x = zg, C' has two
local intersecting branches y = +(x — xg)vx — A; i.e., C is singular
(not a manifold).
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e if we are working over R and A > zg, then (z¢,0) is an isolated
point of C, i.e., C' is degenerate at that point (not a 1-dimensional
manifold).

o if we are working over R and xg is a triple root, then C' has a cusp
singularity at (xo,0) (again, not a manifold).

e if we are working over C and xg is a double root, then again, C' has
two local intersecting branches.

e if we are working over C and x¢ is a triple root, then C' has a cusp
singularity at (xo,0).

Recall that CP? = C2 U CP!, where C? is the set of points [1 : @1 : 23] and
CP! is the set of points [0 : o1 : w3]. In other words, CP? can be covered by
three charts

X, .

wi: Uy = Vi, goi([Xo:Xlng]):(xj:]) , fori=0,1,2,

Xi) ji
where we think of Uy as C?, and (U1 UUQ) \Up as the CP! added to compactify
it. In order to understand the closure C of C' in CP?, we need to understand
its equation in terms of the chart variables on U; and Us to find the extra
solution points that do not belong to Uy. We then study whether C is a
manifold near those points.
To visually distinguish the coordinates on Vj, Vp, and V3, let

o I = % and xo = % denote the coordinates on Vj;

= %} and yp = % denote the coordinates on Vi;

= % and z; = % denote the coordinates on V5;

Switching the notation from (z,y) to (z1,x2) for C, we are starting from
the equation

(8.3) r3— (23 +ar; +b) =0

on Vp, and we want to find its equivalent on V7 and V5.

The coordinates (x1,z2) and (yo,y2) are related by

1 Y2
Ty = —, €T = —.
Yo Yo

Substituting these into (8.3) and multiplying by v gives
yoys — (1 +ayg + byg) = 0.

The points in C' N (U \ Up) correspond to setting yo = 0, which yields no
solution.
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Similarly, the coordinates (z1,x2) and (zo, z1) are related by
Z1 1
r1 = —, Tr9 = —.
20 20
Substituting these into (8.3) and multiplying by 2§ gives
20 — (23 4+ az1 28 + b23) = 0.
The points in C' N (U \ Up) correspond to setting zg = 0, which yields the
solution (zg, z1) = (0,0). Therefore,
C=CuU{[0:0:1]}.

Let us now understand the behavior of C near [0 : 0 : 1]. Differentiating the
equation above in z-coordinates and evaluating at (0,0) gives

(1 — 2az120) dzo + (322 + azd) le‘(O 0) = dzg # 0.

Therefore, C' is non-singular at [0: 0 : 1].

Conclusion. If a,b € C and 27b> +4a® # 0, then C C CP? is a holomorphic
manifold of complex dimension one — that is, a closed Riemann surface when
viewed as a real manifold. Determining the genus of this surface requires
tools that will be introduced in the next book.

]



Chapter 9

Transversality

In this lecture, we gradually generalize our previous results on regular values
and regular level sets to their most general form. First, we consider the
preimage of a larger submanifold than just a point.

Definition 9.1. Suppose f: M — N is a smooth map and Z C N is a
smooth submanifold. We say that f is transverse to Z if

dp f(TyM) + Ty(p)Z = Ty N Vpe fY2).

In particular, we say that two submanifolds Z1, Zo C N are transverse, and
write Z1 (| Za, if the inclusion map ¢1: Z; — N is transverse to Zs. In
other words,

1,72y +T,Zy =T,N VpeZiNZs.
Proposition 9.2. Suppose f: M — N is a smooth or holomorphic map,
and Z C N is a submanifold of the corresponding reqularity class. If f is

transverse to Z, then the preimage Y = f~1(Z) is a smooth or holomorphic
submanifold of M, respectively. Moreover, codimysY = codimyZ, and

T,Y = dpf N (Typ)2) = ker(dpf: TyM — TpyN/TpnZ)  VpeY.
In particular, if Z1,Z5 C N are transverse submanifolds, then Z1 N Zy is
also a submanifold of codimension codimyZ; + codimpy Zs.

Proof. For each p € Y, choose an open neighborhood W of p in M and a
chart p: U — V C A around f(p) in N such that

e p(UNZ)=VnNA for some affine subspace A’ C A as in Defini-
tion and
o f(W)CU.
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Then,
(mopo f)TH(0)=Y NW,
where m: A — A/A’ is the quotient projection map.
By the transversality assumption, 0 is a regular value of the map
mopof: W — AJA.

It then follows from Lemma that Y N W is a smooth or holomorphic
submanifold of the expected dimension. Since this holds in a neighborhood
of every p € Y, we conclude that Y is a smooth or holomorphic submanifold
of M of the expected codimension. O

Next we discuss the full generalization of Lemma [8.9|leading to the concept
of fiber product.

Definition 9.3. For ¢ = 1,2, suppose f;: M; — N are smooth maps. We
say that fj is transverse to fa, and write f1 Q) fo, if

dp1f1(Tp1M1) + dpzfQ(szMQ) = TqN?
V (p1,p2) € M1 x My  with fi(p1) = fa(p2) = q € N.

Theorem 9.4. Fori= 1,2, suppose f;: M; — N are smooth or holomor-
phic maps, and assume fi1 N fo. Then the fiber product

My g, g, Mz = {(p1,p2) € My x Ma: fi(p1) = fa(p2)} C My x My
s a smooth or holomorphic submanifold of My x My, respectively. Moreover,
dim (M; f,x s, M) = dim My + dim M, — dim N,
and

T(phpz)(Ml 17X f2 MQ) = {(v17v2) € T, My X Tp, M- dplfl(vl) = p2f2(v2)}'

Proof. It is clear that Mj f X, M> is the preimage under f; x fy of the
diagonal subset N =2 Ay C N x N. Given any atlas A = {p,: Uy, — V,, C
Aq}aez, we obtain the product atlas

Ax A:= {Soa X pg: U, X Uﬁ — Vo X Vﬁ}a,BEI

which defines the product smooth or holomorphic structure on NV x N. For
every o € Z, we have

Pa X pa((Ua x Ug) NAN) = (Vo x Vo) N Ay,

where A4, is the diagonal subspace in A, X A,. Therefore, Ay C N x N
is a smooth or holomorphic submanifold, depending on the context.

Note that
T An = {(w,w) € T(y (N x N): w € TyN}.
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Claim. The product map f; x fo is transverse to Ay if and only if f; is
transverse to fo. Therefore, the theorem follows from Proposition [9.2)

Proof of Claim. Suppose fi is transverse to fo, i.e.,
dp, f1(Tp, My) + dp, f2(Tp, M) = Ty N,
V (p1,p2) € M1 x My with fi(p1) = fao(p2) =q € N.
We aim to show that fi; x fo is transverse to Ay. For any
(w1, w2) € Tiqo)(N x N) =TyN ® T;N,
by assumption, there exist

vi €T, My and vy €T, Mo

such that
dpy f1(v1) + dp, fo(—v2) = w1 — wa.
Define
U= wy — dplfl('Ul) = w9y — dp2f2(U2) € TqN.
Then
d(th)(fl x f2)(v1,v2) + (u,u) = (w1, w2).
Therefore,

Ay po) (1 X J2) Ty o) (My X M2)) + Tig ) AN = T(g,q) (N X N),
Vg €N, (p1,p2) € (f1. f2) "' (g, 9);

i.e., fi1 X fo is transverse to Ay. The converse follows similarly. o O

Example 9.5. Here is an important example of the concepts above that
will eventually lead to the definition of the Euler characteristic, once we
introduce the notion of orientation on manifolds.

For every smooth or holomorphic manifold M, its tangent bundle, considered
as a smooth or holomorphic manifold of twice the dimension, contains a
canonical copy of M as the zero-section. We denote this zero-section by
My C TM. In other words, M is embedded into T'M via the map = — 0, €
T, M, and My denotes the image of this embedding.

More generally, any section of the tangent bundle — that is, any vector
field £: M — TM — defines an embedding of M into TM. That, this is a
smooth or holomorphic embedding follows from differentiating 7 o & = id.
We say that ¢ is a transverse section (or transverse vector field) if it
is transverse to the zero-section My C T'M, in the sense of Definition [9.1]
In this case, the set of points at which ¢ vanishes, namely ¢~1(Mp), is a
submanifold of codimension

codimypps (M) = dim M.

That is, €71 (Mjy), often simply denoted £71(0), is a discrete set of isolated
points (finite if M is compact).
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In local coordinates, the condition of transversality for £ has an explicit form.
Suppose (z1,...,Zy,) are local coordinates on an open subset U C M. Then
¢ takes the form

&(x) = (z,y(z)) € TR™ ZR™ x R™,

meaning that

Therefore, the derivative d€ is the matrix

=[]

Since the tangent space to the zero-section 7'My corresponds to the span of
the columns of

I,

o)

we conclude that a point p € £71(0) is a transverse zero if and only if the

matrix [%(p)] of partial derivatives of the coefficients of £ at p is non-

singular.
Exercise 9.6. Recall that the 2-sphere S? C R? can be covered by two
charts o1 : Uy — Vi = R?, with transition map

i Vi = RA(0} = Voo =RA{0}, 2= (1,32) = (y1,92) = 5 (1,22).

P
In the solution to Exercise [6.10, we showed that the local vector fields
&4 = 2103, + 2205, on Vi
and
- = —(y10y, + y20y,) on V_

are compatible on the overlap and define a global vector field ¢ on S2. Is
this vector field transverse to the zero section?

Exercise 9.7. In the solution to Exercise [6.12] we showed that every holo-
morphic vector field ¢ on CP! = C U {00} is the extension to oo of a vector

field
€0 = (a+ bz + c2%)0.

on C. For which a,b,c € C is £ transverse to the zero section? How many
zeros does it have?
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Exercise 9.8. Suppose f: M — M is an automorphism of the smooth
manifold M. The graph My of f is the image of the embedding

M—MxM, p—(pflp) VpeM.

For instance, the diagonal Aj,; is the graph of the identity map. Show that
My and Ay are transverse if and only if, for every fixed point p of f, the
differential dy,f: T, M — T,M has no eigenvalue equal to 1. Note that if
My and Ay are transverse, the fixed points of f will be isolated, since
dlm(AM N Mf) = 0.

Exercise 9.9. Let f: C — C2 be the holomorphic map

2z (29, 29)
for some positive integers a and b with ged(a, b) = 1. Show that the smooth

map f is transverse to S® C C2. What is the intersection of the image of f
with $37?

Exercise 9.10. Show that the following subsets of CP? are holomorphic
submanifolds:

Q1= {[Xo:Xl : Xo] € CP?: X3+X12—|—X22 :()}7
Q2= {[Xo c X1 Xo] € CP?: Xo X1 + X1 X0 + XoXg = 0}.
Is Q1 transverse to (Qo. What can you say about Q)1 N Q7
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Solutions to exercises

Exercise On V4 and V_, the vector fields £, and &_ vanish only
at the origin of V; and V_, respectively. Under the chart maps ¢4, these
correspond to two distinct points on S2, namely the north and south poles.
So, the global vector field £ has two zeros.

To determine whether £ is transverse to the zero section, we examine the
matrix of partial derivatives of the coefficients of £ in the corresponding
charts at each zero.

At the origin of V., the matrix of partial derivatives of the coefficients of &,

is
Oz Omy
0, 0. _
ory  0xy | = I2
Or1 Oxo
Similarly, at the origin of V_, the matrix of partial derivatives of the coeffi-

cients of £ is —Is.

Therefore, £ is a transverse section of the tangent bundle. . ([

Exercise Recall that CP! can be covered by two copies of C, Vj = C
and V] = C, with the following gluing data:

e Vp1,Vip=Cx

e the transition map g_s1: C* — C* is given by z +— w = 27!, where
z is the coordinate on V{; and w is the coordinate on V;.

As we showed in the solution to Exercise the local holomorphic vector
field & = (a + bz + ¢22)d, on Vj matches the local holomorphic vector field
& = —(aw? + bw + ¢)9,, on Vi.

If ¢ # 0, then w = 0 is not a zero of &, and therefore the only zeros are
on Vy. Furthermore, the quadratic polynomial a + bz + cz? has either two
distinct roots or a double root, depending on whether b? —4ac # 0 or not. If
it has a double root zy, then both the polynomial and its derivative vanish
at 2g, so & (and hence §) is not transverse to the zero section.

Symmetrically, if a # 0, then z = 0 is not a zero of &, and therefore the
only zeros are on V;. The polynomial aw? + bw + ¢ again has either two
distinct roots or a double root depending on whether b? — 4ac # 0. If it has
a double root wg, then both the polynomial and its derivative vanish at wy,
so &1 (and hence &) is not transverse to the zero section.

Finally, if @ = ¢ = 0 and b # 0, then & and &; vanish at z = 0 and w = 0,
respectively, and both zeros are transverse.

We conclude that ¢ is a transverse section if and only if b* — 4ac # 0. In
this case, & has two distinct zeros; otherwise, it has a non-transverse double
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Zero. O

Exercise [9.8. Recall that
T Arr = {(v,0) € Ty (M x M): v € T,M}.
Also,

T(p,f(p))Mf = image (d(pp)(id X f))
= {(v,dpf(v)) € Tip,g(p)(M x M): v € T,M} .
Clearly, My N Ajps corresponds to the subset Fix(f) C M of fixed points of
f-
If My and Ay are transverse, then by Definition
TppMs + Tpp)Am = Tipp) (M x M),

for every p € Fix(f). Since both summands on the left have dimension
m = dim M, and the right-hand side has dimension 2m, the equation above
implies

T My N TippAn = 0.

In other words, for 0 # v € T, M, the vector (v,dpf(v)) € T}, ) My does not
belong to T{,, ,yApr; that is, v # dp f(v) for all v # 0.

We conclude that the differential d,, f: T,M — T,,M has no eigenvalue equal
to 1. The argument is reversible, giving the converse direction as well. [J

Exercise Since S? is defined by
9(z1,20) = |21)? + |20|> = 2121 + 2072 = 1,
the tangent space T(Z17Z2)53 is the kernel of the real linear map
dg = 21dz1 +Z1dz1 + 20 dzo + Zo dzs.
The derivative of f,
d.f: T.C — T(a 0 C?,
maps 0, to az?10,, + bzb_lazz.

By Definition [9.1], we want to show the equality of real vector spaces
(9.1) image(d, f) + T(Za7zb)5’3 = T(Za’zb)c2,

whenever |z|?* + |z|?* = 1 (in particular, z # 0 on image(f) N S3).

For z # 0, we compute

dg (aza_lﬁzl + bzb_lazz) = az9 120 4+ 207120 = 271 (al2% + b|2|P) £ 0.
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Therefore, for z € f~1(5%), we have
az® 19, +b2>710., ¢ T(Za7zb)S3,
implying (9.1)).

The equation |z|?* + |2|?® = 1 defines the circle S*(r) in C of radius 7 such
that 72? 4-72® = 1. By transversality and since f is an embedding away from
0 (to prove that it is one-to-one we need gcd(a,b) = 1), the intersection of
the image of f with S3 is a 1-dimensional submanifold L of S3. The embed-

ding f|c\foy maps S*(r) onto L. Therefore, L is a knot in S® that depends
on a and b. g

Exercise Recall that X, X1, X2 are not actual coordinates on CP?,
and the equations defining @ and @5 are not functions on CP2. To describe
them as level sets, we must restrict to charts where the equations become
actual functions.

Recall from the solution to Exercise that CP? can be covered by three
charts

X.
it Ui = V; 2 C% i([Xo: X1t Xo]) = (xj = XJ> , fori=0,1,2.
i/ j#i
To visually distinguish the coordinates on Vp, Vi, and Va, let
o = % and x9 = % denote the coordinates on Vj;
® yp = % and yo = % denote the coordinates on Vi;

= % and z; = % denote the coordinates on V5s;

The coordinates (x1,x2) and (yo, y2) are related by

1 Y2
xrr = —, €T = —.
Yo Yo
Similarly, the coordinates (x1,x2) and (2o, 21) are related by
Z1 1
r1 = —, Tr9 = —.
20 20

The equations of ¢o(Q1 NUp), p1(Q1NUL), and pa(Q1 NUs) in Vy, V4, and
V5, respectively, are

1+ a7 +23 =0,

Yo +1+93=0,

2(2) + z% +1=0.
So they all represent the same equation f(z,y) = 1+ 22+ y? =0 in C2. We

compute
df =2z dx + 2y dy.
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This derivative vanishes only at (z,y) = (0,0), which does not satisfy
f(z,y) = 0. Therefore, 0 is a regular value of f, and the level set {1 +
22 4+ y? = 0} defines a holomorphic submanifold of C2. We conclude that
Q1 is a one-dimensional holomorphic submanifold of CP2.

Similarly, the equations of ¢o(Q2NUp), ¢1(Q2NU7), and pa(Q2NUs) in Vj,
V1, and Vs, respectively, are

1+ 2172 + 22 =0,

Yo + Y2 + yoy2 = 0,

2021 + 21 + 20 =0,
so they all represent the same equation g(z,y) =z + 2y +y = 0 in C2. We
compute

dg=(1+y)dz+ (1+x)dy.

This derivative vanishes only at (x,y) = (—1,—1), which does not satisfy
g(x,y) = 0. Hence, 0 is a regular value of g, and the level set {z+zy+y = 0}

defines a holomorphic submanifold of C2. We conclude that Q2 is a one-
dimensional holomorphic submanifold of CP?.

To determine whether ()1 and ()2 intersect transversely, it suffices to check
their intersection in one chart at a time. Consider their intersection in Vj:
(r+zy+y=0) and (1+22+¢y*>=0)

in C2. First, solve
r+zy+y=0 & (r+1)(y+1)=1.
Setting u = x + 1 and thus y + 1 = 1/u, the second equation becomes

1 2
1+(u—1)2+<u—1> =0 & u'—2u3+3u?-2u+1=0.

The roots of this quartic are

14+iv3

5
each with multiplicity 2. The presence of multiplicities indicates that Q1
and @2 do not intersect transversely. The corresponding points in (x,y)-
coordinates are

u:

(z,y) =pp = (p—1,1—-1).
At each point p,, we compute the differentials:

dx+ay+y)|, =1+y)de+(1+a)dy|, =Mdr+pdy,

d(1 4 2* + yQ)\pu = 2xdr + 2y dy‘pu = (2p — 2) dz + (21 — 2) dy.

These two differentials are proportional because 1 = _71(2,11 —2). Therefore,

Ty, Q1+T),Q2 = ker(ﬁ dz+p dy) —|—ker((2,u—2) dx+(21—2) dy) =2C# TpM(CQ.
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The calculations in other two charts are identical. In conclusion, as the
calculations indicate, )1 and Q2 non-transversely intersect at two points
(with multiplicity two), each lying in the domain of all three charts.

O



Chapter 10

Constant Rank and

Whitney Embedding
Theorems

In this lecture, we’ll discuss the proof of the Constant Rank Theorem and
then state and prove Whitney’s Embedding Theorem regarding the embed-
ding of smooth manifolds into Euclidean spaces.

Constant Rank Theorem is a local statement, and manifolds are locally
Fuclidean. Therefore, we need to prove the following local result.

Theorem 10.1. Suppose f: U — U’ is a smooth (respectively, holomorphic)
map of constant rank r between open subsets of R™ and R™ (respectively,
C™ and Cm/). Then, for every p € U, after possibly shrinking U and U’
around p and f(p), there exist coordinate systemﬂ (x1,...,2m) on U and
(Y1, -y Ymr) on U’ such that

flz1,...,xm) = (z1,...,24,0,...,0).
——

if r<m/

The proof uses the Inverse Function Theorem stated below, which we will
not prove here.

IThis is the pedestrian word for charts.
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Theorem 10.2 (Inverse Function Theorem). Suppose f: U — U’ is a
smooth (respectively, holomorphic) map between open subsets of R™ (re-
spectively, C™ ). If the linear map

dpf: TyU — Ty U’
is invertible, then f is smoothly (respectively, holomorphically) invertible

near p. In other words, after possibly shrinking U and U’ around p and f(p),
there exists g: U' — U such that g is smooth (respectively, holomorphic) and

go f=id.
Exercise 10.3. Deduce the holomorphic version of Inverse Function Theo-

rem from the smooth version.

Proof of Theorem Starting with the standard coordinates on R™
and R™ (respectively, C™ and C™), and after possibly shrinking U and U,
the goal is to construct diffeomorphisms (respectively, biholomorphisms)

o:U—=SVCR™ U -V cR"Y
(respectively, p: U — V C C™, ¢/': U’ — V' € C™') such that
ofop Hay,...,xm) = (x1,...,2,,0,...,0).
———

if r<m/

Without loss of generality, we may assume p =0 € U and f(p) =0 € U'.
Also, after a linear change of coordinates, we may assume

=[5 9.

f(@) = (fi(®),..., for(2)),

If

define
SO: U — Rma @(151,... 7-73m) = (fl(x)) . 'af?“(x)ﬂx?“-i-la" .,me).

Then the derivative at the origin is

I, *
dop = [0 Im—r:| :
Therefore, by the Inverse Function Theorem, after possibly shrinking U
around 0, the map ¢ is a diffeomorphism (respectively, biholomorphism)
from U onto some open set V' C R™ (respectively, V' C C™). By construc-
tion,
foo Ha1, ..., xm) = (x1, ..., 20, hpy1 (), ..., By (2)),
for some smooth (respectively, holomorphic) functions hy41, ..., hyy.

Since
rank d(f o cp_l) =rank df =r,
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and

I, 0
d(fop™) = [* ] ]
oz r<i<m/, r<j<m
we conclude that

[8}”] =0.
Ox; r<i<m/, r<j<m
In other words, for fixed (z1, ..., z,), the function h;(x1, ..., T, Tpy1, ..., Tim)

is constant in (Ty41,...,ZTm)-

After possibly shrinking U’ around the origin, define
o U — R™
(yl, ey ym’) — (yh e Y, (yz — hi(yh e Y, 0, . 70))r<i§m’> .

Then the derivative at the origin is

doy’ = [Ir 0 } .

* Ly

Hence, by the Inverse Function Theorem, after possibly shrinking U’, the
map ¢’ is a diffeomorphism (respectively, biholomorphism) from U’ onto
some open set V! € R™ (respectively, V! ¢ C™).

It is now easy to check that

O ofop Hay,...,xm) = (z1,...,2,,0,...,0).
U

In previous lectures, we learned a method for constructing interesting man-
ifolds inside simple ambient spaces such as R" and C" by considering level
sets of non-trivial functions defined on these spaces. The following theorem
shows that, in fact, any smooth manifold can be embedded into some R for
sufficiently large n. The holomorphic analogue of this statement is certainly
not true, since the only holomorphic functions on closed holomorphic mani-
folds are the constant functions. However, some holomorphic manifolds can
be embedded into CP™ or open subsets of that, and these are called alge-
braic varieties. Algebraic geometry uses algebraic methods to study such
holomorphic manifolds and generalizes them extensively to include a wide
range of singular spaces and more abstractly defined geometric objects.

Theorem 10.4. Any smooth m-manifold M can be embedded into R>™.
Moreover, if m > 2, it can be immersed into R>™~1,

We will not prove this full version in this lecture and instead refer the reader
to [Hir76, Theorems 8.4.1, 8.4.2], as we do not need it here and the proof is
quite long and technical. Instead, we present the following simplified version,
whose proof is one of several applications of partition of unity. The proof of
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Theorem will rely on this simpler version, along with an exhaustion of
the manifold by compact subsets and some dimension reduction arguments.

Theorem 10.5 (Simplified Version of the Whitney Embedding Theorem).
Every compact smooth manifold M admits an embedding into R* for some
sufficiently large k.

Proof. Since the manifold is compact, we need to build a one-to-one immer-
sion. Around every point p € M, there is a chart ¢,: U, — V,, C R™ (or
H,,,) such that ¢,(p) =0, V,, = B3(0) (or B3(0) NH,,). Let g,: Up — [0, 1]
be a smooth function such that

loy oy =1 and ol o (5,0 =0
By the second property, each ¢, trivially extends to a function on the entire
M. Note that

wp: M — R™

is well-defined, smooth, and identically equal to 0 € R™ outside ¢, *(B2(0)).
Since M is compact, we can choose finitely many of these charts, say indexed
by {p1,...,pe}, such that {gp;il(Bl(O))}f:l is an open cover of M.
Define

= (Qp1s -+ Opes Pp1 * Pprs -1 Op  Ppp) s M — RE™HD,
Suppose f( 1) = f(g2). By assumption, there exists i = 1,...,¢ such that
@1 € ¢, (B1(0)). Therefore, 9,,(g2) = @pi(q1) = 1. We conclude that
1,42 € @, (B2(0)) and
©p.(q1) = ¥p;(q2)-
Therefore, g1 = g2. We have shown that f is one-to-one.
Moreover, for every ¢ € M, there exists i = 1,..., ¢ such that ¢ € cp;il(Bl (0)).
Therefore,
op; * Ppi (@) = ©p, ().
We conclude that f is an immersion at g (because f o ¢, ' = idgm on
B1(0)). O
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Solutions to exercises

Exercise Without loss of generality, we may assume p = f(p) = 0.
Thus, suppose

f:U—=U, f(z:(zl,...,zm)):(fl,...,fm)

is a holomorphic map between open neighborhoods of 0 in C™, and the
complex linear map

dof: ToU = ToU',  dof = [gf (0)]
J

1<i,j<m
is invertible. We can think of f as a smooth map between open sets of R?™
by decomposing each z; and f; into their real and imaginary parts:

flz,y) = (gl(z), cosgm(2),h1(2), .., hm(z)),
where
z=uz+1iy, [f(z)=g(z)+ih(z).
Then the real Jacobian of f with respect to the x, y-variables is

99: } {35?1 ]
R {aﬂ”ﬂ' (0) 1<ij<m L9 (0) 1<i,j<m

Yol (=)

The determinants of d§ f and dy f are related by
det(dg f) = |det(dof)[*.

Therefore, by the smooth version of the Inverse Function Theorem, f is
locally smoothly invertible near the origin.

1<i,j<m

Since
FHf(2) ==,
differentiating both sides with respect to z; gives
_ 9 R R A S )}
0= gzl =2 e 2 s o
Jj=1 J J=1 J
Since g—g = 0, we obtain
" 9519
- 8§j 8ZZ o
7j=1
Moreover, since the matrix [%(O)} e is invertible, we conclude
g <i,7<m
ot

=0 V1<j<
0%; =J =

i.e., f~1 is holomorphic as well.






Chapter 11

Vector bundles

We have already encountered an example of a vector bundle — namely, the
tangent bundle. More generally, a vector bundle is a family of vector spaces
parametrized by the points of a manifold, such that the family is locally
trivial. The precise definition is as follows.

Definition 11.1. A continuous, smooth, or holomorphic vector bundle con-
sists of

e A pair of continuous, smooth, or holomorphic manifolds £ and M,
and a surjective map m: F — M of the same class,
e A real or complex vector space structure on each fiber E, = 7 !(p)

for all p e M,

such that, for each p € M, there exists an open neighborhood U 3 p and a
CY smooth, or holomorphic identification (called local trivialization)

d: Elp=n(U) —UxF (F=R"orCF),
that maps each fiber E, linearly isomorphically onto {p} x F.

Example 11.2. The simplest example of a vector bundle is a trivial (i.e.,
product) bundle F = M x F, for some fixed vector space F', where 7 is
the projection map onto the first factor. By definition, every vector bundle
is locally trivial.

Remark 11.3. (1) There are slightly different ways to define a vector
bundle in the literature, but they all describe the same class of
objects.
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(2)

()

Every holomorphic vector bundle has complex vector spaces as its
fibers, but there are smooth or continuous vector bundles with com-
plex vector spaces as their fibers that are not holomorphic because
M or 7 is not holomorphic — for instance, S* x C — S*.

In practice, we often assume that the open sets are domains of
chart maps ¢: U — V C A. Since ¢ identifies U with V', one may
instead define ® to be an identification between E|y and V x F
lifting the map ¢; that is, a commutative diagram

Ely —2-VxF
o,
U—">v.
More precisely, the composition of ®: E|y — U x F and ¢ X
idp: U x FF — V x F gives the identification
(pxidp)o®: E|ly — V X F

fitting the commutative diagram above. Moreover, since 7 is con-
tinuous, E|y = 7 1(U) is an open subset of E, and every local
trivialization E|yy — V x F' C A x F is indeed a chart on E.

Similarly to Remark 27 in some examples, we may reverse the
arrows and define a local trivialization to be an identification

:UxF—Ely oo VxF-2=FE|y
-
v— U,
We will switch between these different perspectives whenever it
helps simplify the notation.

The integer dim F (over R or C) is the same for all local trivializa-
tions (on a connected manifold) and is called the rank of vector
bundle.

Given a vector bundle E — M, suppose {U,}acz is an open covering of

M and

Oy Ely, — Uax Fy Vael

is a collection of local trivializations. Then the transition maps

Ppod b (U, NUg) x Fo — (Uy NUg) x Fp

are of the form (z,v) — (z, Pap(x)(v)) for some z-dependent family of
linear isomorphisms

Qnsp: Uy NUg — Isom(F,, Fp).



11. Vector bundles 97

Fixing an identification F,, = R* or C* for all a € Z, the latter is simply a
matrix-valued function

(11.1) ®os: Ua g — GL(E,R) or GL(k, C).

Remark 11.4. If we change to the perspective of the third item in Re-
mark then

®,: Ely, — Vo x Fy Vael
and the transition maps

Ppod t: Vg x Fy — Vg x Fp
are lifts of

Parsp =050 Pa t Vas — Vaa
mapping (z,v) to (@ap(x), Pasp(x)(v)) such that
Posp: Vo3 — Isom(F,, Fp)

is a family of linear isomorphisms. We will switch between these two per-

spectives whenever it helps simplify the notation. In the following, we use
the second point of view.

In Section [d], we learned that we can ignore the chart maps and focus on the
transition functions to construct M as a quotient space obtained by gluing
affine pieces via transition maps. The same can be done for vector bundles
as follows. This point of view will sometimes make it easier to justify why
certain examples are vector bundles. It also reveals the information needed
to characterize a vector bundle.

If a manifold is described as a quotient space
M = HVa/ ~, €T~y = era,,Bv yevﬂ,on y:@ou—hé’(x)a
a€cl

a vector bundle £ on M that is locally trivial on the image of each V, is a
manifold of a similar qoutient form
(11.2)

E= H(VO‘ x Fy)/ ~, such that (z,v) ~ (y,w) <
acl
(z,v) € Vo X Fuo, (y,w) € Vo X Fg, (y,w) = (gpw_}/g(I), @aﬁg(x)(v)),
where, for each x,
<I>a._>5($) S ISOm(Fa, Fg)
is a linear isomorphism between F, and Fj. In other words, ®,.3 is a
continuous, smooth, or holomorphic map

Qs Vo3 — Isom(Fy, Fp).
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Fixing an identification F,, = R* or C* for all a € Z, the latter is simply a
matrix-valued function

®osy: Vag — GL(E,R) or GL(, C).

These identifications are required to satisfy ®,, = idp,, for all a € Z, and
the cocyle condition illustrated by the commutative diagram

cbw—yy

Qo Doy
Va’gvxFaﬁ-Vﬁ XFﬂHVfY Xny

| i

Parp

Vaﬂ’y \Vﬁ/ VW
PPy
In other words,
(11.3) Poisy (2) = Parsy (Parsp(T)) 0 Parsy(z) VX € V8-

By the definition of ~, the projection maps m,: V, X F, — V,, are com-
patible with respect to ~ and patch together to define the projection map
m: E — M. Also, since M is Hausdorff by assumption, the quotient space
is automatically Hausdorff.

Just as in the example of tangent space, every x € V,, the fiber 7 !(z) =
{z} x F, is a vector space identified with F,, and if z € V, is equivalent to
y € Vg, then

Pop(x): {a} x Fy — {y} x F3

is a linear isomorphism. Therefore, each fiber of E has a well-defined vector
space structure. However, the particular identification of that with R™ or
C™ depends on the choice of a basis.

The following analogue of Lemma [4.1] holds for similar reasons.

Lemma 11.5. There is a one-to-one correspondence between vector bundles
presented as (11.2)) and the pairs consisting of a vector bundle E — M and
a collection of local trivializations over a countable atlas of M.

Example 11.6. For every smooth or holomorphic manifold M, the tangent
bundle T'M is a vector bundle of rank equal to the dimension of M. In
this example, and from the point of view of , the linear isomorphisms
®, .5 are simply the derivatives dp,.g of the transition functions .. g3;
see Definition [6.3] The cocycle condition corresponds to the chain rule.
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Example 11.7. A line bundle is a real or complex vector bundle of rank
one. In this case, if we have F, = R or C for all o € Z, then ®,,,3 is simply
a nowhere-vanishing function

Q450 Vo3 — R* =Isom(R,R) or C* = Isom(C, C).

This makes working with line bundles much easier than with arbitrary vector
bundles, where matrix multiplications are non-commutative.

Definition 11.8. Given a vector bundle 7: E — M, a section of F is a
map s: M — FE such that wo s =idy,.

For instance, a section of tangent bundle is a vector field on the manifold.
Sections generalize the concept of graph of functions in Calculus and natu-
rally arise in many contexts such as in the example of vector fields on smooth
manifolds. As another example of their importance, recall that closed holo-
morphic manifolds do not admit any non-constant holomorphic function.
However, many of them admit complex line bundles (i.e. rank 1 vector
bundle) with plenty of sections. These sections can be used to embed the
manifold into a projective space or to define interesting holomorphic sub-
manifolds. For instance the equations in Exercise [9.10] can be realized as
sections of a holomorphic line bundle on CP2.

Definition 11.9. Given a rank r vector bundle 7: £ — M and Y C
M, a frame for El|y is a set of r sections s1,...,8.: Y — FEly such that
{s1(p),...,sr(p)} is a basis for E, at every p € Y.

Lemma 11.10. Let m: E — M be a real or complex vector bundle, and let
U C M be an open set. Then there is a one-to-one correspondence between
local trivializations

(11.4) O: Ely >UxR" or UxCr

and real or complex frames for E|y.

Proof. Given a local trivialization
¢: Ely -UxR" or UxC",

define sections s;(z) = ®~!(x, ¢;), where e; is the i-th standard basis vector.
Then {si,...,s,} forms a frame for F|y.

Conversely, given a frame {si,...,s,} over U, define a local trivialization
O:UxR" or UxC'— E|y
by setting

O(z, (ar,...,a,)) = Z%‘Si(l’) € E,.
i=1
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This defines a local trivialization in the sense of Remark 4. One may
look at @' to get a local trivialization in the sense of (11.4)). O

The trivialization maps we encountered above are special cases of vector
bundle homomorphisms defined below.

Definition 11.11. Let 7: £ — M and 7’: E' — M’ be vector bundles. A
vector bundle homomorphism is a commutative diagram

E—" g

e

M —— M’
such that for every point p € M, the induced map on the fibers
/
Ep = By

is linear. Depending on context, the pair (f, k) is assumed to be continuous,
smooth, or holomorphic.

There are several important special cases, particularly when f =id: M —
M and h satisfies one of the following;:

(1) If h is injective, it is called an inclusion or embedding, and the
image of F in E’ is a sub vector bundle of E’.

(2) If h is surjective, then E’ is a quotient of E. We will study this
case in more detail in the next section.

(3) If h is an isomorphism, then E and E’ are considered isomorphic
as vector bundles.

Example 11.12. As an example of the third case, we say a vector bundle
is trivial if it is isomorphic to a product bundle M x F.

Example 11.13. Associated to every real or complex projective space P(V)
there is a tautological (real or complex) line bundle v — P(V') defined
in the following way. Every point in P(V') corresponds to a line ¢ C V. Thus,
we define 7 as a sub vector bundle of the trivial bundle P(V') x V' by

(11.5) vy={{l,v) eP(V)xV:vel}

where the projection map v — P(V') is simply restriction to 7 of the
canonical projection map P(V) x V' — V. Let us find the transition maps
of v and show that v is a smooth or holomorphic vector bundle depending
on whether V is a real or complex vector space. Identifying V with R?+!
or C""1 recall from that RP™ and CP™ can be covered by (n + 1)
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standard charts:
X

wi: U = Vi, gpi([XO:...:Xn]):<xj:X> , fori=0,...,n,
i) jti

where U; is tlle open subset defined by X; # 0 and V; = R{O’"'E’""”} = R
or V; = Cl0-int o C - Also, the transition functions of the manifold are
given by
-1 (L‘k/.’L'j ifk?éi,
i = @jop; ((T ) = i, where =
Cirrj = 05005 ((@)kei) = (Yn)hsts Yk {1/xj -
By definition
Yixo: o xa] = R-(Xo: .2 Xp) C R or C- (Xp: ...: X,) cC"L,
Restricted to U;, every point can be uniquely presented as
(~T07 sy Li—1, T4 = 1>:Ui+17 s 7xn)7
resulting in a local trivialization
(I)i3 Uz xR or C — ’)/‘Ui,
(@) ki t) — (@) ktir two, .. Tie1, @ = 1, Tig1, ..., Tp)).
It is easy to calculate that
Disj ((Th)kzi) = 5.
The latter is definitely a smooth or holomorphic non-zero function on V; ;.

Exercise 11.14. Let £/ — M be a smooth vector bundle, and let £ — M
be a subvector bundle of E’. Show that, over a sufficiently small neighbor-
hood of any point in M, a local frame for E can be extended to a local frame
for E'.

Exercise 11.15. Show that the tangent bundle 7'S* is a trivial vector bun-
dle, while the canonical line bundle ~,, — RP" is non-trivial.
Exercise 11.16. Show that the tangent bundle 7°S? is trivial.

Exercise 11.17. Show that the holomorphic tangent bundle TCP! is not
holomorphically isomorphic to the trivial complex line bundle CP! x C.

The set of vector bundle homomorphisms between two vector bundles £ —
M and E' — M’ that lift a fixed map f: M — M’ forms a module over

COo%(M), C>®(M), or C"(M), depending on the context. In other words, if
h1 and hgy are two vector bundle homomorphisms as in the diagram below

E:2>>E’ ,
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and g1, go are two functions on M, then the linear combination g1hy 4+ gshs
is also a vector bundle homomorphism that maps each v € E, to

g1 (D) lp(v) + g2(P)halp(v) € B

In the special case where M = M’ and f = idj;, we denote the space of
vector bundle homomorphisms from F to E’ lifting the identity map by
Hom(E, E’). We will later show that Hom(FE, E’) is itself a vector bun-
dle over M, whose fiber over p € M is the space of R- or C-linear maps
Hom(E), E,,) between the vector spaces Ej, and E,.

Exercise 11.18. What is the rank of vector bundle Hom(FE, ') — M? If
L — M is a line bundle, show that Hom(L, L) — M is trivial.
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Solutions to exercises

Exercise For any point p € M, fix arbitrary local frames (s1, ..., sk)
for E and (s),...,s},) for E' over a sufficiently small neighborhood U of p.
Since (s}, ..., s},) forms a basis for E” at every point in U, there exist smooth
functions {a;;}1<i<k, 1<j<i on U such that

kl
s; = Zaijsg forall 1 <i<k.
=1

Because the sections (s1,. .., s;) are pointwise linearly independent, the ma-
trix

[“ij] 1<i<k, 1<j <k’
has full rank k at every point in U. After possibly shrinking U and reordering
the (s}), we may assume that the & x k minor [aij] 1<ij<k 18 Invertible
throughout U. We conclude that

/ /
(81s-+ 38k, Spyqs---15k)
is a local frame for E'|. O

Remark 11.19. By Lemma [11.10}, there is a one-to-one correspondence
between local trivializations

®: Ely »UxRF and @': E'|y — U xR¥

and local frames for E|y and E'|y, respectively. Thus, the statement of the
exercise is equivalent to the following: Over a sufficiently small neighborhood
of any point in M, there exists a local trivialization of E’ whose restriction
gives a local trivialization of F. We will make use this to understand the
transition maps of quotient bundles.

Exercise [11.15] Thinking of S! as the level set of the smooth function
f(z,y) = 2% + 32 on R?, the tangent bundle T'S' is given by ker(df)|g1. It
is easy to see that the vector field

Y0, — 20y € ker(df)
defines a nowhere-vanishing section of the real vector bundle T'S'. By
Lemma (11.10, this section defines a trivialization of T'S!.

Recall that RP™ is the quotient space S™/Zy, where Zy acts on S™ C R*H!
by the antipodal map. Consider the tautological line bundle

F={(z,0) € S"xR"™ :p e R -z}
over S™. The Zs-action on S™ lifts to a Zs-action on v by

(z,v) = (—x,v).
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It is clear from the definition (cf. (1L1.F)) that the canonical line bundle
v — RP™ is the Za-quotient of 5. By Lemma[I1.10] v is trivial if and only if
it admits a nowhere-vanishing section £. Such a section would arise as the
image under the quotient projection of a Zs-invariant, nowhere-vanishing
section E of v over S™.

Consider the map
¢: 8" =75, z(z,2),

which defines a nowhere-vanishing section of 5. Note, however, that (—1) €
Zo acts on ( by

g(—l‘) = (—$, _33) = —(l',$) = _C(x)a
so ( is anti-invariant under the Zs-action.

Suppose we try to define a Zs-invariant section E by rescaling (:

£(z) = f(2)¢(x)

for some smooth, nowhere-vanishing function f: S™ — R. Then we must
have

f-2)=&@) = f=n)(—2) = f@)((x) = flz)(—¢(@)),
which implies
f(=z) = —f ().
So f must be an odd function. But by the Intermediate Value Theorem,

any continuous odd function on S™ must vanish somewhere, contradicting
the assumption that f is nowhere vanishing.

Therefore, no such Zs-invariant, nowhere-vanishing section E exists, and
hence the line bundle v is non-trivial. ([l

Exercise [11.16] Thinking of S as the level set of the smooth function
f(z,w) = |2]? + |w|? on C2, the tangent bundle T'S? is given by

TS? = ker(df = zdz + Zdz + wdw + wdw)| gs.
The vector fields

R Ry )
L T T ez T "o

0 0 _0 _0
S =—w—+z——wW—+72

9z “ow 0z “ow’

£ = iw— — i2— — i— + iZ——

0z ow 0z ow’
define a global frame for 7'S®. Therefore, by Lemma/[11.10| 7'S? is trivial. O
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Exercise In Exercise we proved that the complex vector space
of holomorphic sections of TCP' is 3-dimensional. On the other hand, a
holomorphic section of CP' x C is simply a holomorphic function, and the
only holomorphic functions on CP! are constants. Therefore, the complex
vector space of holomorphic sections of CP! x C is 1-dimensional. We con-
clude that TCP! and CP' x C are not isomorphic. O

Exercise We have rank Hom(FE, E') = rank F x rank E’ because
if rank £ = k and rank E’ = k', then Hom(E,, E},) can be identified with
Mk/xk(R) or Mklxk((C) for all p € M.

By Lemma a line bundle is trivial if and only if it admits a nowhere
vanishing section. By the previous step, if L is a line bundle, then Hom(L, L)
is also a line bundle. Moreover, the identity homomorphism id: L — L
defines a nowhere vanishing section of Hom(L, L).






Chapter 12

Dual of vector bundles

There are many operations in linear algebra that transform one vector space
into another. In general, any such basis-independent operation can also be
applied fiber-wise to vector bundles, producing important and interesting
new bundles from a given one. In this lecture, we will learn about duals of
vector bundles, which leads to the definition of the cotangent bundle and
differential 1-forms. We will see more examples in the next lectures.

The dual of a vector space V over the ground field F is the vector space
V* = Hom(V,F)

of linear maps from V to F. The dual of any vector space has the same
dimension. Any choice of basis (e1,...,e;) on V determines a dual basis
(e1,...,e;) on V* defined by

. 1 if i=j
ei(ej):{

0 otherwise.

These bases determine an isomorphism V' — V* that sends e; to e;. The
same construction can be applied (fiber-wise) to vector bundles (producing
a co-frame from a frame).

Lemma 12.1. Given a vector bundle E —> M, there exists a dual vector
bundle of the same regularity type, E* — M, such that E, = (Ep)* for all
pe M.

107



108 12. Dual of vector bundles

Proof. Given a presentation of E as in ((11.2)), the dual vector bundle is
(12.1)

E* = [[(Va x F))/ ~, where (z,1a) ~ (y,75) <
acl
(9777,8) € Vg X Fék’ (z,Ma) € Vs X Fy, (x7q)a»—>ﬁ(x)*(77ﬂ)) = (SDaHﬂ(x)ﬂm)
Here,
DLp(r): Fy — F
is the dual of ®,,3(x), which reverses direction. In general, if
L: Fy — Fy
is a linear map between two vector spaces, its dual is the linear map
L*: Fy — F}
defined by
L*(n)(v) = n(L(v)) Vv e Fy, neF;y=Hom(F,TF).

If one prefers the transition maps to go in the usual direction, we instead
take the inverse of @7 ,;(x). That is, the transition maps of E* in the

standard sense are @zHﬁ(a:)_l. Since

Dpse = P,

a—3’

we may also write @,  (¢asp(2)) instead of (‘IDZHB(x))*l. When F,, = R*

or CF for all o € Z, the maps ®,,,3 are matrix-valued functions

(I)a,_w: Vaﬂ — GL(,IC,R) or GL(/C,(C)

ES

By the following exercise, ®7, 5
of ®,,5(x). Thus, the transition maps of E* inherit the same regularity
as those of E (i.e., if F is continuous, smooth, or holomorphic, then so is
E*). O

(au)*1 corresponds to the transpose inverse

Exercise 12.2. For any linear map
L:F™ —F" v~ Av,
given by an n x m matrix A, show that the matrix of
L*: (F")* =2 F" — (F™)" 2™
is AT. Here, the identification (F")* = F" uses the standard basis of F".
The example of the cotangent bundle.

Definition 12.3. For every smooth or holomorphic manifold M, the dual of
the tangent bundle is called the (smooth or holomorphic) cotangent bundle,
denoted T* M.
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If

o= (z1,...,2pm): U —VCR"or C"
is a chart on M, then 0,,,...,0;,, form a local frame for 7'M over U, and
dry,...,dz,, form the dual frame for T* M, satisfying

doon) {1 1=
Li\Ozx; ) =
J 0 otherwise.

A section of T'M over U is called a vector field; a section of T*M is called
a differential 1-form. With respect to the co-frame dz,...,dx,,, every
differential 1-form has the local expression

m
n= Z a;(x) dz;
i=1
for some smooth or holomorphic functions a;(z).

For every smooth function f: U — R (or holomorphic f: U — C), the
derivative of f at any point x € U is a linear map

dxf: TxM — Tf(x)R =R.

Therefore, by the definition of the dual bundle, df defines a section of T* M
over U (i.e., a differential 1-form), which has the local expression

df =) Fo: da;.
i=1

For this reason, the derivative of f is often referred to as the differential
of f. We will later see that every differential 1-form is locally of the form
df for some smooth or holomorphic function f — this is the content of the
Poincaré Lemma.

Globally, recall from (6.3]) that, if M is presented as a quilted space

M =[] Va/{Vas 3 2 ~ Garss(x) € Vo for all o, B € T},

acl
then a vector field on M is a collection of local vector fields X, on V,
satisfying the compatibility condition:
Xalvs,. = doap(Xalv, )

Since dya—3 pushes Xa‘Va, , forward by a diffeomorphism to a vector field
on an open subset of V3, it is often called the push-forward map, denoted
(@a»—ﬂ)*'

Similarly, by (12.1), a global differential 1-form 1 on M is a collection of
local 1-forms 7, on V,, satisfying the compatibility condition:

NalVs.o = Pass(M8IVa5)-
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Here, the pullback map

Parss = (dParsp)”

is the dual of the push-forward map and acts by composition with dgq.s.
That is, for a vector field X, the action is defined by

(@Z»—)B(”B)) (Xa) = nﬁ(((PaHB)*(Xa)) =Tg (d@a»—),B(Xa))-

If £ = (z1,...,2y) are coordinates on V,, and y = (y1,...,ym) are coordi-
nates on Vg, with y = ¢ 3(x) on the overlap, then

ng = > biy) dy;
=1

and
Prsp(18) = 15 0 dass = Y biParsp(@)) dyi © dparss.
i=1
By the chain rule,

Jy;
dy; o dSOaHB = Z ai/ dJTj.
J

Therefore, computing pullbacks is stnghtforward:

m 8 Z
s (zw dyZ) S S ) 22 i,
=1

=1 j=1

If

N = Z az dl’z,

then the compatibility condition reads

3@/
Z b S%u—)ﬂ 6;

on the overlap.

More generally, if f: M — N is a smooth or holomorphic map between two
manifolds, the derivative of f is a vector bundle homomorphism

df: TM — TN

lifting f. The dual of this is called the pullback by f and is a vector bundle
homomorphism

f*=(df)": T*N — T*M
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in the reverse direction. Formally, it is simply composition with df; i.e., for
every pe M, v € T,M, and n € T]’F(p)N, we have

frneTyM,  (f'n)(v) =n(dpf(v)).
In local coordinates, the definition is the same as above. If x = (z1,...,2m)
are local coordinates on U C M and y = (y1,...,yn) are coordinates on
U' C N, with y = f(z) on f~1(V)NU, then a 1-form 7 on U’ has local
expansion

and

Exercise 12.4. Thinking of S' as R/Z, show that the 1-form dt on R
descends to a 1-form on S'. Consider the standard embedding ¢: S* < R?
of S in R? and find the pullback of differential 1-form

_ —xdy + ydx
a2 4y?
on R? — {0} to S! in terms of dt.

Exercise 12.5. Recall that the 2-sphere S? C R? can be covered by two
charts o1 : Uy — Vi = R?, with transition map

1
P Vi =RI\{0} = Vo, =R*\ {0}, «=(21,22) W(ﬂfl,@)'

Does the differential 1-form x1dx; + xodxre on V_ extend smoothly to the
entire S2?
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Solutions to exercises
Exercise In the domain of L, (F™)* is identified with F" by letting a
column vector w € F™ act as a linear map n,, on F" via

Ne: F* —F, v—wl -velF Voel".
The identification of (F™)* with F™ on the target is defined similarly.
By definition, for every w € F™ we have

(L7)(0) = o (L(v)) = 0" L(v)

=wl Av = (ATw)Tv = Naryy(v) Yo eF"

Therefore, under the identifications of (F")* with F” and (F™)* with F™ as
above, L* maps w to ATw. O

Exercise The group of integers Z acts on R by translations:
on: R— R, op(t)=t+n VneZ, tekR

The 1-form dt is invariant under this action; i.e. ¢!dt = d(t + n) = dt for
every n € Z. Therefore, it descends to a 1-form in the quotient space.

The standard embedding ¢: S' < R? = C of S' in R? is given by
[t] — ™ = cos(27t) + isin(27t).
Therefore,
e (—xdy + ydx) _ —cos(2mt)dsin(27t) + sin(27t)d cos(27t)
z2 4+ y? 1
=2r {— cos(27t)%dt — sin(27rt)2dt} = —2ndt.

O

Exercise For the 1-form 7 in the question, we need to find ¢%,, 7
on Vi — = R* — {0} and check whether the resulting expression extends to
the origin. We have

Oy (v1dzy + zaday) = (x1/|2)?) d(21/|2]?) + (22/|2]?) d(z2/|2]?)
= (x1/|:1:\6) ((a:% — x%) dzxy — 2z129 d2o)
+ (z2/|2]%) (2] — 23) dy — 22122 day)
_ i + pdry
|2 [*

The last expression clearly does not extend to the origin.
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Pullback, direct sum,
and quotient

In general, a vector bundle homomorphism is a commutative diagram

lifting a map between two manifolds. However, in many discussions, it is
more convenient if the underlying map is the identity map idp;: M — M.
The following enables reducing any vector bundle homomorphism to one
over idy;: M — M.

Lemma 13.1. Given a continuous, smooth, or holomorphic vector bundle
E' — M’ and a map f: M — M’ of the same regularity type, there ewists
a so-called pullback vector bundle f*E' — M of the same reqularity type
such that

o (f*E'), = E}(p) forallp e M,

e f*E' admits a canonical vector bundle homomorphism f*E' — E'
lifting f of the same reqularity type;

e cvery vector bundle homomorphism h: E —s E' lifting f factors
through f*E’ in the following sense:

113
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h

/\
FE——s f*F —=F'

L

M Vs M’
\_/
f

By abuse of notation, we will also denote the vector bundle homomorphism
E — f*E' by h.

Proof. Fix a collection of local trivializations
{(I);: E/|UA — U(; X Fa}aGZ

such that {U/ },cz is an open covering of M’ and the change of trivialization
maps

P50 Uy N UG — Isom(Fy, Fp)
are continuous, smooth, or holomorphic, depending on the context. Let
Uy = f~HUL) and define
D, : (f*E/)|Ua — Uq X P, (I)a’p(v) = q)/o<|f(p)(v) Vo € (f*E/)P = E}(p)

Then, the change of trivialization maps ®,,,3 of the induced collection {®, }
are

Posp = @;Hﬁ o f:UyNUg — Isom(Fy, Fp).
We conclude that the change of trivialization maps ®,.,3 are also continu-
ous, smooth, or holomorphic, depending on the context.

The canonical map f*E’ — E’ is simply the identity map
idpr,
(F"E = Epy =3 Eiy)
on each fiber. The induced map h: E — f*E’ also views h(v) € E}(p) as a
vector in (f*E"), for all p € M and v € E,,. O

Remark 13.2. In light of the previous lemma, given a smooth or holomor-
phic map f: M — M’, the derivative of f is often considered as a vector
bundle homomorphism

df : TM — f*TM’

over the identity map on M.

For every two vector bundles F and E’ over the same base M, the direct
sum £ @ E' — M of E and E' is the vector bundle with fibers Ej, © E},
at every point p. Direct sum of local trivializations for £ and E’ define
local trivialization of the direct sum bundle. With notation as in and
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/

a8 for

F =R or C, if the change of trivialization maps ®,,,3 for &/ and ®
E’ are realized as matrix-valued functions

Bosp: UaNUs — GL(K,F) and @), 5: Uy Uz — GL(K',F),

then the change of trivialization matrix-valued functions corresponding to
E @ E' are the block-diagonal matrices

(13.1) [%5’/3 @,0 ]

a3

The direct sum bundle E @ E' sits as the middle term of a short exact
sequence of vector bundles over M

0—F —F®oFE —F —0,

where E — E®FE' is the vector bundle embedding v — v®0, for allv € E,
and the vector bundle quotient map E @& E’ — E’ is simply projection to
the second factor. This is a special case of an arbitrary short exact sequence
of vector bundles that can be associated to any vector bundle embedding as
follows.

Lemma 13.3. Suppose E and E" are continuous, smooth, or holomorphic
vector bundles on M and v: E — E" is a vector bundle embedding (of the
same regularity type) over (the identity map of) M. Then there exists a
“quotient” vector bundle E' = E"/E of the same regularity type such that
E]’J is the quotient vector space EIQ’/EP for allp € M, leading to a short exact
sequence of vector bundles

0—F—F'—FE —0.

Proof. With F = R or C, if rank E” = r” and rank E = r, then by the
solution to Exercise(11.14] there is an open covering {U, }oez of M and local
trivializations

" By, — Uy x F”
such that the restriction of ®” to E|y, also defines a local trivialization

(Poz = (PIO/4|E|UD¢: E|Ua — Ua x F".

We conclude that the change of trivialization matrix-valued functions of F
and E” are related by

d *
" o a—f
(13.2) B = |: 0 (I);HB:| )

for some (" — ) x (r" —r) matrix block @/, ., ; in the lower right position.
If 7 . 5 is continuous, smooth, or holomorphic, the same holds for ®/ ., 5
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With 7/ := # — r, using the canonical decomposition F”' = F” & F"', and
taking the quotient of ®” and ®,, we obtain local trivializations
@ (E"/E)|y, — Uq x (F"" JF") = Uy x F"

such that the change of trivialization matrix-valued functions are ®/ g

O
Example 13.4. Suppose f: M — M’ is an immersion. Then, from the
point of view of Remark

df : TM — f*TM’

is a vector bundle embedding. The normal bundle of f is the quotient
bundle T

*T
NF= T™

which fits into a short exact sequence of vector bundles

0—TM — f*TM — Nf —0.

For submanifolds M C M’, i.e., when f is simply the inclusion map of
a submanifold, we will denote the normal bundle of M in M’ by NyyM
instead.

Exercise 13.5. Suppose f: M — M’ is a smooth or holomorphic map,
and let Y = f~!(¢) C M be a regular level set (thus, a submanifold). Show
that Ny/Y is trivial.

Exercise 13.6. Here is a generalization of the previous exercise. Suppose
f: M — M’ is a smooth or holomorphic map which is transverse to Y’ C
M'. LetY = f_l(Y/) C M. Show that Ny Y = (f|y)*NM/Y/.

Definition 13.7. We say a short exact sequence of vector bundles
0—FE—FE"— E —0.

splits if there is an isomorphism E” = E® E’ compatible with the inclusion
and projections above; i.e. the following diagram commutes:

EI E// EI/

o

E——=E®FE ——F

Exercise 13.8. Show that every continuous or smooth short exact sequence
of vector bundles splits.

Remark 13.9. Pullback commutes with all pointwise operations on vector
bundles; for example, the pullback of a dual bundle or a direct sum is the
dual or direct sum of the pullbacks, respectively. Moreover, if f: M —
M’ is a continuous, smooth, or holomorphic map and s: M’ — E’ is a
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continuous, smooth, or holomorphic section of E’, then there is a pullback
section f*s of the same regularity defined by

(F"s)(p) = s(f(D) € E}yyyy = (fE)y  Vpe M.

Therefore, pullback induces a module homomorphism from the C°(M’),
C>®(M"), or CP(M")-module of sections of £ to the corresponding C°(M),
C>®(M), or CP'(M)-module of sections of f*E’, covering the algebra ho-
momorphism between functions on M’ and functions on M.

Exercise 13.10. Suppose 7: E — M is a smooth or holomorphic vector
bundle. Considering E as a manifold, show that the tangent bundle TE of
F fits into a long exact sequence

0 — 7E — TE 2 7T M — 0.

If F is a smooth vector bundle, use Exercise to conclude that TE =
m™(E®TM).
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Solutions to exercises
Exercise By definition, for every p € Y,
dpf: TM — T,M'

is surjective and T,,Y = ker(d, f). Therefore, df induces an isomorphism

TMl|y
df|Y: NMY = W —Y X TqM/.
This is an isomorphism between the normal bundle Nj;Y and the product
vector bundle Y x T, M’ (note that T, M’ is a fixed vector space). O

Exercise Generalizing the previous proof, by definition of transver-
sality, for every p € Y, the composition

pro dpft TM — Tf(p)M//Tf(p)Y/

is surjective and T,,Y" = ker(pr o d, f), where

TM'|y
r: TM'ly — NyY' =
p ly M Ty
is the quotient projection map. Therefore, df induces an isomorphism

TM|y

prodfly: Nu¥ = —o

— (f|y)*NM/Y/.

O

Exercise [13.8. There is a relatively easy way to prove this using metrics
on vector bundles; however, both the following argument and the proof of
existence of metrics — as we will see soon — rely on partition of unity. Holo-
morphic manifolds do not admit partition of unity. Therefore, the proof does
not extend to holomorphic vector bundles. In fact, not every holomorphic
short exact sequence of vector bundles splits and there are “cohomological”
obstructions that are related to the * component in .

There is a one-to-one correspondence between splittings £/ = E @ E'
and embeddings +: B/ — E” whose composition with the projection map
pr: B — FE’is idg. We construct such an embedding. By Exercise
over a sufficiently small neighborhood U of any point in M, a local frame

(s1,...,8;) for E extends to a local frame (s1,...,sg) for E”. Therefore,
restricted to the subspace (sgi1,...,s,7) C E”|y, the projection map
<Sk+1, RN Sk//> — E,|U

is an isomorphism, The inverse of this map gives an embedding

Ly - E,|U — E”|U
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whose composition with the projection map pr: E”|;; — E; is the identity
map.

Fix an open covering {U,}aez of M and local embeddings (as constructed
above)

Lot E/‘Ua — E//’Ua,

as well as a partition of unity {gn: Uy — [0,1]}aez subordinate to this
covering. For each «, the product

Oala: E/’Ua — E”‘Ua
extends a similarly denoted vector bundle homomorphism
Oata: B — E"

on the entire M that is trivial (i.e. zero) homomorphism outside U,. Let
L= ZQQLQ: E — E".
«

Here, we are adding a countable collection of homomorphisms — that is, a
countable collection of sections of Hom(FE’, E”) — such that the sum is finite
in a neighborhood of each point. For every v € E”, we have

pr(e() = S proata@) = > oaprla@) = (3 a)v=v.

a: veE|y, a: veEE|y,

O

Exercise [13.10, For every p € E and v € E),, the kernel of the derivative
map

dym: Ty E — T,M

is the set of vectors tangent to the fiber E, at v; that is, ker(d,7) = T, E,.
Since E, is a vector space, using parallel transport, the tangent space at
any v € F, is canonically identified with TpoF, = E,. Therefore, there is a
canonical isomorphism

ker(dm)|y = Er) VovekE.
By the definition of pullback, this implies that
ker(dr) = n*E.

Furthermore, from the perspective of Remark the map dr is surjective
onto m*T'M. We conclude that TE fits into a short exact sequence

0 — °E — TE 2 2T M — 0.
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By Exercise every short exact sequence of smooth vector bundles splits.
Since pullback and direct sum commute, we obtain

TE = n*E®n*TM = r*(E ® TM).



Chapter 14

Tensor and exterior
products

Suppose Vi, ..., Vi and W are vector spaces over a field F. We say that
L:Vix- - xV,— W

is a k-linear map if it is linear in each input. The concept of the tensor
product, discussed below, allows us to realize L as a linear map defined on
a vector space other than the product Vj x --- x Vj itself. More precisely,
the tensor product V; ®---® V}, is the vector space generated by k-tuples
of vectors (v1,...,v;) € V4 X -+ x Vi, presented as v ® - - - ® v, subject to
the following relations:

e ® - QUFV)® QU= ® QU Dug) + (11 ®

'~®v§®~-®vk);
o (VIR QU -QUE) =R R(cv;)®---@ug foralli =1,...,k
and c € F.

It is a classical result in linear algebra that every k-linear map L: Vi X - -+ X
Vi, — W factors through V] ® - - - ® Vj; that is, L induces a linear map

L@ @V — W
such that L is the composition of L with the natural (k-linear) product map
Vixoox Vi Vi@ 0Vh (01,00 S0 @ S

For each i = 1,...,k, suppose {€;1,...,€im,;} is a basis of V;. Then the
collection

{ers ® - ® ek gy i

121
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is a basis for V1 ® - - - ® V}.. In particular,
k
dim(V ® - - @ Vi) = [ [ dim Vi.
i=1

It is easy to see that tensor product is associative; i.e.
VN@VheoVi=V1VWh V=1 (Vhe V).
A collection of linear maps
Li: Vi — W, 1=1,...,¢,
induces a linear map
L=0L1® - Q@L: V@ @V, — W ®: QW
that sends v1 ® --- ® v¢ to Li(v1) ® -+ ® Ly(vg). Also, taking dual and
pullback commute with tensor product, and

Ve eVs=11eV)e (12 V).

Similarly to the other operations discussed in previous sections, this def-
inition extends point-wise to a collection of vector bundles over the same
manifold M. Furthermore, the identities above hold for vector bundles as
well.

Lemma 14.1. Given continuous, smooth, or holomorphic vector bundles
FEq,...,Ey, — M, there exists a so-called tensor product vector bundle
Lo b, —M
of the same reqularity type such that
(BE1®---®@E),=(F1)p®---®(E), YpeM.

Proof. With F = R or C, fix an open covering {Uy}aez of M and local
trivializations
(I)i,oa: Ei‘U,l — Ua x "
with the corresponding change-of-trivialization matrix-valued functions
(I)i,a»—>63 U, N UB — GL(’I“Z‘,F)

that are continuous, smooth, or holomorphic, depending on the context.
The tensor product of the vector bundle homomorphisms ®; , defines local
trivializations

D1 0® QP (B1® - QFE) |y, — U X (F'®@---QF™) X U, xF "%,

The change-of-trivialization matrix-valued functions ®,,,3 of these induced
trivializations are matrices whose entries are products of the corresponding
entries of the ®; ,,3. Therefore, the tensor product bundle £y ® --- ® Ej,
has the same regularity type as its constituents. ([l
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Example 14.2. For every pair of vector bundles E, E’ — M, the vector
bundle

Hom(E,E') — M
of vector bundle homomorphisms (over the identity map of M), defined
before Exercise is canonically isomorphic to E* @ E’. To see this,
since both are defined point-wise, it suffices to canonically identify the two
at the level of vector spaces.

Suppose V and V' are vector spaces and

¢
azZm@véGV*@V’.
i=1

We can interpret « as a linear map Lo : V — V' defined by

¢
La(v) = 3 ni(v) ol
=1

Conversely, suppose L: V — V' is a linear map. Fix a basis ey, ..., ey for
V and a basis €],...,¢e, for V', and let e],...,e; denote the dual basis of
V*. Suppose

L(ei):Zaijeg Vi:L...,k).
J

Then define
a = ZZaijef ®e; ceV*eV.
(]
It is easy to verify that L = L,. We leave it as an exercise to the reader
to check that the element « associated to L is independent of the choice of
bases.

Exercise 14.3. For every vector bundle £ — M, show that the vector
bundle £ ® E* has a nowhere-vanishing section. In particular, show that
the tensor product of any line bundle with its dual is naturally isomorphic
to the trivial line bundle.

Remark 14.4. The set of real or complex line bundles of any regularity
type over a manifold forms a group under the operation ®, with the identity
element being the trivial line bundle and the inverse of any element given
by its dual line bundle. In the case of complex line bundles, this group is
known as the Picard group.

In the definition of tensor product, if all vector spaces V; are the same vector
space V, we may impose additional symmetry or anti-symmetry relations
among the generators as follows.

There are two ways to define the k-th symmetric tensor product of a vector
space.
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Definition 14.5. (symmetric tensor product as a quotient space) The k-th
symmetric tensor product Sym* (V) of V is the quotient of
V-V R0V
————
k times

by the symmetry relations
V1 Q- @V ~ Ug(1) @ @ Vg (k) VoeSy,

where S is the symmetric group on k letters.

From this perspective, we will continue denoting the equivalence class of
v ®- - @y in SymF (V) = V& / ~ by the same expression, bearing in mind
that permuting the factors does not change the element in the vector space.

Definition 14.6. (symmetric tensor product as a subspace) The k-th sym-
metric tensor product Sym* (V) of V' is the subspace of elements in V&
that are invariant under the permutation action of Sj.

From this perspective, an element of Sym®(V) is a linear combination in
V@ that is symmetric with respect to the group action. For instance, for
every v,v' € V, v®@v + v ® v defines an element of Sym?(V). We will use
the second perspective when presenting metrics in the future sections.

Over a field of characteristic zero such as R or C, there is a canonical isomor-
phism between the quotient space (Definition 1) and the subspace (Definition
2), established via the symmetrization map:

sym: V& — Symk(V)subspace, T % Z o-T.
c€Sk
This map descends to an isomorphism
VR~ = Sym® (V) subspace € V.
That is, every class in the quotient has a unique symmetric representative.
Symmetric tensor products of vector bundles are defined (pointwise) in the

same way.

Example 14.7. An important example of a symmetric tensor is a Riemann-
ian metric on a real vector space/bundle. Given a real vector space V, a
Riemannian metric g on V is a symmetric bilinear map

g VxV—R
that is positive-definite in the sense that
g(v,v) >0 Vo #0.

In other words, g can be regarded as a linear map g: Sym?(V) — R satis-
fying the positive-definiteness condition. Equivalently, g is an element of the
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dual bundle Sym?(V)* = Sym?(V*) that satisfies the additional positivity
condition above.

A continuous or smooth Riemannian metric on a vector bundle F is a con-
tinuously or smoothly varying family of Riemannian metrics on fibers of
E. In other words, g is a continuous or smooth section of Sym?(E*) that
is positive-definite on each fiber. The semi-positivity condition is an open
condition; that is, if g is a Riemannian metric, then any sufficiently small
deformation of it in the space of sections of Sym?(E*) will also be a Rie-
mannian metric. A Riemannian metric on a smooth manifold M is, by
definition, a Riemannian metric on its tangent bundle. We will learn more
about Riemannian manifolds in upcoming lectures.

Next, we define and study a skew-symmetric analogue of the tensor product.
Definition 14.8. The k-th exterior product A*V of V is the quotient of
V-V R0V

————

k times

by the skew-symmetry relations
V1 Q- @V~ E(0) V(1) @+ @ Ug() Vo € Sk,
where (o) € {£1} is the sign of the permutation o. If ¢ is a product of an
odd number of transpositions, then £(c) = —1; otherwise, it is +1.
We will denote the equivalence class of v; ® -+ ® vy, in AKV = V& / ~ by
v1 A A g,

bearing in mind that permuting the factors may introduce a sign. For in-
stance, for every 1 < i < j <k, we have

VIA- AN NN Nvg ==V A ANU A AU A N U,
Therefore, if v; = v; for some ¢ < j, then
(14.1) v A Ao, = 0.

More generally, successive applications of this fact show that if vy, ..., vg
are linearly dependent, then

vi A Avg = 0.

In fact, for the following reason, vy A --- A v = 0 if and only if vi,..., vk
are linearly dependent.

If e1,...,en is a frame (ordered basis) for V', then the collection

(14.2) {ei, Ao Aeiy Yociy<ip<<ip<m

is a basis for A¥V. In particular, A¥V only makes sense for 0 < k < m and
is 0 (i.e., trivial) for other values of k.
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e For k = 0, A°V is defined to be F = R or C, depending on the
context.

e For k=1, A'V is simply V itself.

e For k = dimV, APV .= AdmVY is a 1-dimensional vector space
generated by any element of the form

w=1v1 A N\vg,

where vy, ..., v is an ordered basis (or frame) for V. Note that any
1-dimensional vector space over the ground field I can be identified
with I, but the identification is not canonical.

A linear map L: V — W induces linear maps
AFL: APV — AW, vV k>0.

Exercise 14.9. Suppose L: F" — F™ is a linear map given by an m x m
matrix A = [a;;]. What is the linear map

AL AMF"" =F — T
in terms of a;;?

Exercise 14.10. Consider the linear map
L: M2><2(]F) — M2><2(F), A— BA

where My, o(F) is the space of real 2 x 2 matrices and B € Mayo(F). Show
that

AL : A*Myyo(F) — A*Moyo(F)
is multiplication by det(B)2.

Exterior products of vector bundles are defined (pointwise) in the same way.

Lemma 14.11. Given a continuous, smooth, or holomorphic vector bundle
E — M, for every 0 < k < rank E, there exists a so-called exterior
product vector bundle

AE — M
of the same reqularity type such that
(A*E), = A*E, Vpe M.
In particular, A°E = M x R or M x C is defined to be the trivial bundle,
AE =FE, and
AtopE — ArankEE M

is a line bundle whose fiber at any point p is generated by the wedge product
of the vectors in a frame for E,,.



14. Tensor and exterior products 127

Proof. The proof of the first statement is identical to that of Lemma [14.1}
that is, the change-of-trivialization matrix-valued functions of each AFFE
are matrices whose entries are products of k& x k& minors of the change-of-
trivialization matrices ®,.,3 of E. Therefore, AFE has the same regularity
type as its constituents. In particular, it follows from the solution to Exer-
cise that the change-of-trivialization functions of the line bundle A*PE
are
det(q)a,_w)t UsNUg — F*.

The statements about the special cases are the vector bundle analogues of
the items listed before Exercise More precisely, for k = 0, we define
A°E = M xF. We will later see that this convention is consistent with other
constructions. For k = 1, A'E = E by definition. For k = r := rank F,
any local trivialization E|y — U x F" corresponds to a frame s1, ..., s, for
Ey. Wedging these sections defines a nonzero section w = s; A --- A s, of
(A*PE)|y (and thus a local trivialization (A*PE)|y — U x ). Changing
the local trivialization corresponds to changing the given frame to another
frame s},...,s.. If

.

/ .

Si:E ;S Vi=1,...,r,
J=1

then

w':sll/\-~-/\s;

is related to w by
(14.3) W' = det(a;;) w.

Exercise 14.12. What is the rank of A*E?

In the next lecture, we will dive deeper into the definition of the top exterior
product and orientability.
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Solutions to exercises
Exercise A nowhere vanishing section of ¥ ® E* is equivalent to an
embedding of the trivial line bundle
O:=MxF
into F ® E*. Therefore, we need to find a (canonical) embedding
t:0— FEQFE"

of O into F ® E*. Taking duals, this is equivalent to a surjective vector
bundle homomorphism (over the identity map of M)

S (EQE) =E*QFE — 0 =0.

However, the natural pairing between elements of F and those of the dual
bundle E* defines a canonical surjective bundle homomorphism

E*®QFE — O,

which completes the proof of the first statement.

If F is a line bundle, then £ ® E* is also a line bundle. Therefore, the above
(surjective) morphism is an isomorphism. O

Exercise Let e1,...,en denote the standard basis of F"*. We have
m
vj::L(ej):Zaijej ijl,...,m.
i=1

Therefore, the induced map A™L is given by
eitN--Nep = v A ANy,
Expanding the wedge product on right we get m? terms of the form
1,025 *** A €is N A €mi,

where (j1,...,7m) € {1,...,m}™. However, by , the latter is nonzero
if and only if

o= (J1,--Jm)
is a permutation of (1,2,...,m). Moreover, if o € S,,, then

ey N Nemj, =e(0)er A Aep,.

We conclude that

(A™LY(ey A -+ Aew) = ( Z £(0)a1,(1)020(2) - - .amo(m)) 1A Aem
gESH

=det(A) eg A+ Aep.
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Remark 14.13. In general, given an m-dimensional vector space V and a
linear map L: V — V, the induced linear map

AL ATV — ATV
is multiplication by the base-independent quantity det(L). Fixing a basis for
V identifies V with F™, and L with a matrix multiplication v — Awv. Then,
the calculation above shows that A" L: A™V — A™V is multiplication by

det(A). Changing the basis replaces A with a conjugate matrix BAB™!,
which has the same determinant.

Exercise [14.10L By the remark above, we need to fix a basis for Max2(F),
find the matrix of L with respect to that basis, and calculate its determinant.
Consider the standard basis

e—loe——()l 6_006_00
for Mayo(F). Then
b o
L(en) = bi ol = biieir + baeat,
0 b
L(e12) = 0 b; = bi1e12 + baeas,
S
L(ea1) = bz ol = bioe11 + bazeot,
0 b
L(622) = 0 b;z = b12612 + b226227

which corresponds to the 4 x 4 matrix

bo1r 0 by O
0 b 0 b

Switching two columns and two rows, we get the matrix
B 0
0 B’
which has the same determinant. We conclude that A*(L) is multiplication

by

det [O B

B 0} _ det(B)?.
0

Exercise [14.12] If rank E = r, then, by (14.2)), we have rank A¥E = (]7;)
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Orientability

In the last lecture, we saw that given any real vector bundle £ — M,
the top exterior power defines a line bundle A*PE — M, whose elements
correspond to wedges of vectors in a frame for E at each point. The following
definition will play an important role in defining the integral of differential
forms over smooth manifolds later on.

Definition 15.1. The top exterior product line bundle AYPE — M is
also called the determinant line bundle of E and is sometimes denoted by
det(E). A real vector bundle is called orientable if and only if det(F) is
isomorphic to the trivial line bundle M x R.

An orientation on a real vector bundle E is a choice of isomorphism
det(E) — M xR

up to multiplication by a positive function. A smooth manifold is called
orientable if T'M is an orientable vector bundle; thus, an orientation on M
is a choice of isomorphism

det(TM) — M xR
up to multiplication by a positive function.

Remark 15.2. By definition, for line bundles, being orientable is the same
being trivial.

Exercise 15.3. Show that det(E @& E') = det(F) @ det(E").

Exercise 15.4. Use the previous exercise to prove the following: Suppose
M C N is a submanifold of codimension 1, and both M and N are orientable.
Show that the normal bundle of M in N is trivial.

131
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Exercise 15.5. Suppose that M is an orientable smooth manifold and
E — M is an orientable smooth vector bundle. Use Exercises 13.10l
and [[5.3] to show that F is an orientable manifold.

Exercise 15.6. Let M and N be nonempty smooth manifolds. Show that
M x N is orientable if and only if both M and N are.

Exercise 15.7. Show that a vector bundle F is orientable if and only if
E* is orientable. Furthermore, a choice of orientation on E determines an
orientation on E*.

The following proposition characterizes trivial line bundles, and thus ori-
entable vector bundles.

Proposition 15.8. Suppose . — M is a real line bundle. Then L is
isomorphic to the trivial line bundle if and only if there exists a collection
of local trivializations
®,: Ely, — Uy xR
over an open cover {Uy} of M such that the corresponding change-of-trivialization
maps
(I)QHQZ U, N Uﬁ — R*
are positive. In particular, for every line bundle L, L®? is trivial.
Corollary 15.9. Suppose E — M is a rank r real vector bundle. Then E
is orientable if and only if there exists a collection of local trivializations
&, Ely, — Uy x R"

over an open cover {Uy} of M such that the corresponding change-of-trivialization
maps
Qs Uy NUz — GL(r, R)

have positive determinant.
Proof. The change-of-trivialization maps for det(E) are given by det(®q,3).

If £ admits such a collection of local trivializations, then by Proposition[15.8
det(F) is isomorphic to the trivial line bundle.

Conversely, suppose F is orientable, i.e., det(FE) is isomorphic to the trivial
line bundle, and fix an isomorphism

p: det(E) — M x R.
Starting from an arbitrary collection of local trivializations
b,: Ely, — Uy xR"
such that each U, is connected, we compare the induced trivializations

det(®y): det(F)|y, — Usy xR
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and the restrictions

(P‘Ua: det(E)|Ua — Ua x R.

Since
(¢lr,) odet(®y) ™' : Uy x R — U, x R

is a bundle isomorphism, it is given by multiplication by a nowhere-vanishing
function. Thus, over each U,, this function is either strictly positive or
strictly negative. In the first case, we keep @, as is. In the second case,
we replace @, with ®, = B o ®,, where B € GL(r,R) is any orientation-
reversing linear isomorphism, such as

(T1,...,zp) — (—x1,22,...,2,).

This change flips the sign of the determinant, so that (p|y,) o det(®q)
becomes multiplication by a positive function. In this way, we obtain a new
collection of local trivializations such that each

(¢lv.) o det(®q) ™
is multiplication by a positive function.
Since
(elg, o el lvan, = id,
it follows that
det(® o) = det(®g 0 @, 1)

= det <<I>5 o gp]aﬁl o |y, © @;1)
= det ((@]Uﬁ o det(tl)g)*l)*l) det ((cp|Ua o det(@a)*l)) > 0,
as desired. O

Proof of Proposition While one can prove this proposition more
easily by introducing a Riemannian metric on L, we give here a self-contained
argument that avoids the use of a metric. Instead, we rely directly on a par-
tition of unity — a technique that will later reappear in the construction of
Riemannian metrics.

One direction is straightforward. If ¢v: L — M x R is an isomorphism,
then it defines a global trivialization of L, and its restriction to any open
set of M gives a local trivialization for which all transition functions are the
identity map (and hence positive).

Conversely, suppose we are given a collection of local trivializations

D Llp, — Uy x R
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over an open cover {U, } of M, such that the associated change-of-trivialization
maps

Borsp: Uy Uz — R*

are all positive-valued functions. An isomorphism ¢: L — M x R arises
from a collection of local isomorphisms

where the functions f,: U, — Ry are required to satisfy the compatibility
condition

fg . q)ou—>ﬁ = fo onU;N UB'

In other words, on overlaps U, N Ug, the following diagram commutes:

Ly, =2 U x RIS 1, xR

lxq)ou—)ﬂ lid
(IJB X f

Ly, —>Us x R —">Us x R

Since each ®,,3 is a positive function, we can define

hab—>,3 = IOg((I)aH,B)a
and seek functions h, = log(fa): Uy — R such that the equivalent compat-
ibility condition
ho = ha,_>5 —I—hg on U, ﬂUﬁ

is satisfied. Let {0q: Uy — [0, 1]} be a partition of unity subordinate to the
given cover. Then the functions

ha =Y 08 hass
Ba

are well-defined and smooth, and they satisfy the required relation on over-
laps. Thus, the functions f, = e define a global trivialization of L.

Given a collection of local trivializations
O, Ly, — Uy xR

of L over an open cover {U,} of M, the induced local trivializations of L®?
are given by ®%2. Consequently, the change-of-trivialization maps for L®?
are the squares of those for L, and are therefore positive-valued.

O
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Remark 15.10. The proof of the following statement is somewhat beyond
the scope of this course, but real line bundles over a manifold M are classified
topologically by a homological invariant called the first Stiefel-Whitney
class.

If M is the universal cover of M ; then every real line bundle over M is the
quotient of the trivial line bundle M x R, where the action of 7 (M) on the
second factor is determined by a group homomorphism

m (M) — R* = Auto(R).
Since R* is abelian, this homomorphism factors through the abelianization
of w1 (M), giving a map
H(M;Z) — R*.
Here, Hy(M;Z) is the first homology group of M that we do not define in
this book. Composing with the group homomorphism R* — Zs that sends
t # 0 to the sign of ¢, we obtain a homomorphism

Hl(M; Z) — ZQ.

Two elements ¢, ¢’ € Hom(H;(M),R*) define isomorphic real line bundles
if and only if they induce the same homomorphism Hi(M) — Zs. (See
Exercise for a related discussion.)

Moreover, the real line bundle associated to ¢ € Hom(H; (M), Zs) is topo-
logically trivial if and only if ¢ is the trivial homomorphism.

Example 15.11. For M = S, we have 71(S') = Z and Hom(Z, Z3) = Zs.
The non-trivial line bundle L — S!' = R/Z associated to the unique non-
trivial homomorphism is the Mébius band:

L=(RxR)/Z,
where n € Z acts by (z,v) ~ (z +n, (—1)"v) for all (z,v) € R x R.

Exercise 15.12. If £ — M is a vector bundle, show that F @ FE is ori-
entable.

Exercise 15.13. Show that every complex vector bundle, when seen as a
real vector bundle, is orientable.

Exercise 15.14. Show that the tangent bundle of any smooth manifold is
an orientable manifold.

Exercise 15.15. By studying the transition maps of the standard atlas
of RP2, prove that RP? is not orientable (i.e. prove RP? is not orientable
without using RP? = S2/Z,).

Definition 15.16. Suppose £ — M is an orientable vector bundle and
fix an orientation on it; that is, fix a line bundle isomorphism : A'*PE —
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M x R up to multiplication by a positive function. For every subset U C M
and any frame sq,..., s for E|y, we say (s1,...,Sk) is a positive frame if

Ya(s1(z) A Asp(z) ERy Vo eUs

i.e., ¥ maps s1 A --- A Sk to a positive multiple of the constant section 1 in
U xR.

Definition 15.17. Suppose M is an orientable manifold and fix an orien-
tation on M; that is, fix an isomorphism : A*PTM — M x R up to
multiplication by a positive function. We say a chart ¢: U — V C R™
is compatible with the orientation if (0,,,...,0,,,) is a positive frame.
An atlas on M is called an oriented atlas if every chart in it is compatible
with the orientation.

If a chart is not compatible with the orientation, we can compose it with an
orientation-reversing diffeomorphism such as

(T1yee oy @) = (=21, oy Tin)

to make it compatible. Two overlapping charts ¢, : Uy — R™ and ¢g: Ug —
R™ are both compatible with the orientation or not if and only if

det(dparss) > 0.

On every oriented smooth manifold with the maximal smooth atlas A, we
can choose a maximal oriented subatlas A" of charts compatible with the
orientation. By the discussion above, the remaining charts form a subatlas
A~ that is the maximal oriented subatlas for the opposite orientation.
The latter corresponds to the trivialization

—p: A'PTM — M x R.
Exercise 15.18. Is the two-chart atlas (2.3) on S? an oriented atlas?

Exercise 15.19. Prove that if M is an orientable smooth manifold (with
boundary) then the boundary 0M is also an orientable manifold. Describe
a convention for defining an induced orientation on M.

Orientation will play a major role in the definition of the integral of dif-
ferential forms on manifolds, and we will use an oriented atlas for related
calculations.
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Solutions to exercises

Exercise Suppose @3 are the change-of-trivialization matrix-
valued functions of F and ‘I)/OM,B are the change-of-trivialization matrix-
valued functions of E’ with respect to a collection of local trivializations
over the same open covering of M. Then, recall from that the change-
of-trivialization matrix-valued functions corresponding to E @ E’ are the
block-diagonal matrices

0 o’

a—f

|

Then, as we explained in the proof of Lemmal[I4.1T} the change-of-trivialization
functions of the line bundles det(E), det(E’), and det(E ¢ E’) are

Dy.5 O
0o @

a3

det(®prsp), det(®),,5), and det [ ] = det(Pqs) det (P, 5),

respectively. Since the latter is the product of the first two, we conclude
that

det(E & E') 2 det(E) @ det(E').

Exercise We know from Exercise that T'N|ps splits as
TNy = TM & Ny M.

By the previous exercise, and since Ny M is a line bundle (so A"P(NyM) =
A (NNM) = NyM), we have

AYP(T'N|ps) =2 A™P(TM) @ Ny M.

By the orientability assumption, both A*P(T'N) and A%P(T'M) are trivial
line bundles. Therefore, Ny M is also trivial. O

Exercise By Exercise [I3.10] we have
TE = n*(E & TM).

By Exercise and since taking the exterior product commutes with pull-
back, we get

APTE = a*A"P(E® TM) = m* (A'PE @ A'PTM).

By assumption, both E and M are orientable; i.e., A*PE and AYPTM are
trivial line bundles. We conclude that A*P TE is also trivial; i.e., E is an
orientable manifold. O
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Exercise If M and N are orientable, then det(T'M) and det(T'N)
are trivial line bundles. Let mp;: M x N — M and nny: M x N — N denote
the projection maps to the first and second factors. Then,

T(M x N) =myTM®ryTN.
Therefore,
det(T'(M x N)) =y, det(TM) @ mx det(T'N)

is also trivial. We conclude that M x NN is orientable.

Conversely, suppose M x N is orientable. For any y € N, restricted to
M x {y} = M, we have

T(M % N)|ayxn = TM ® M x T,N.

The second term on the right is a trivial (product) vector bundle; therefore,
AY™P(M x T,N) is the trivial line bundle. Since

det (T(M X N)| (a1 N) > det(TM) ® det(M x T,N),

and both the left-hand term and the last term are trivial, we conclude that
AYPTM is also trivial. Therefore, M is orientable. By symmetry of the
argument, N is orientable as well. ([

Exercise Since det(E*) = det(E)*, taking duals and then inverting, a
choice of isomorphism det(E) — O determines an isomorphism det(E*) — O.
U

Exercise [15.12 We have
det(E @ E) = det(E) @ det(E) = det(FE)%?.

By Proposition det(E)®? = M x R. We conclude that E @ E is ori-
entable. N

Exercise 15.13. Given a collection of local trivializations
P, : E‘Ua — Ua x C"

over an open cover {U,} of M, let ®,,,3 € GL(r,C) denote the change-of-
trivialization matrix-valued functions of E. Let

Parmsp = (I)/an—>ﬁ + i(I)'o/“_)ﬂ

denote the decomposition into real and imaginary parts. Then the change-
of-trivialization matrix-valued functions of the real vector bundle underlying
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FE are
(I)R §= |:(I)Ioo—>ﬂ _q)/c/w—>6:|
= i / .
o (I)ou—>ﬂ qDou—)ﬁ

It is an exercise in linear algebra that
det(®g, ,5) = det(®),,,5)* + det(®L,,5)* > 0.

Therefore, by Corollary the real vector bundle underlying F is ori-
entable. (]

Exercise [15.14] Applying Exercise [13.10to F = T'M, we have
T(TM) =7"(TM & TM).
Therefore,
det(T(TM)) = 7* det(T M)®2.
By Proposition det(T(TM)) = TM x R. We conclude that T'M is an
orientable manifold. 0

Exercise [15.15 Recall from Section 2] and the solution to Exercise 3.5
that RP? can be covered by three charts ¢;: U; — V; & R™ (respectively,
C™), for j = 0,1, 2, with transition maps given by

xp/x; if k #1,

o —w. oo (2 ) = i, where =

In particular, if (21, x2) denote the coordinates on Vj and (yp, y1) denote the
coordinates on V5, then

(Y0, 1) = pos2(z1, 22) = (1/w2, 21/72).

Therefore,

_[ 0 —1/a3
d900i—>2 = |:]./£L’2 —$1/$%:| .

We conclude that
det(dpos2) = x5°.
The overlap region Vo = R x R* has two connected components, on one

of which x5 3 is positive and on the other it is negative. Therefore, since
and V5 are connected, there are no local trivializations

Yo: A2(TVo) — Vo xR, and  ty: A*(TVa) — Vo xR

such that
1702 ©) A2(d<p0,_>2) o ¢612 V'o’g xR — Vv270 x R

is positive. U
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Exercise [15.18] As shown in Exercise the transition map is

1
Py (z) = Wﬂf

Withing r = |z|, we have

2 2
re —2x7 —2x122 - —2T1Tm
J 1 | —2z120 % — 23@% cee —2x0Ty, 1 [ 2
— = — ) ) = <L, — —az
P+ A . : r2mo 4
—221Tm, e r? — 2x72n

where z is treated as a column vector. Since  # 0, the m x m matrix za”

has rank 1. Moreover, T%ch is the orthogonal projection matrix onto the
span of x. Therefore,

2
L, — —ZxxT
r

is the matrix of reflection with respect to the plane 2 and has determinant
—1. We conclude that

det(dpyy_) = —172™ < 0.
Therefore, the two-chart atlas (2.3 on S? is not an oriented atlas. O

Exercise [15.19] The boundary OM of M is a manifold of real codimension
one, and we have a short exact sequence of vector bundles

0 — TOM — TM|ops — NyfOM — 0,

where
Ny OM

is the normal bundle of M in M. For every p € 9M, there are two distin-
guished directions in NprdM|, = R: one pointing toward the interior of M,
and the opposite, outward direction.

More precisely, if ¢: U — V C H,, is a chart around p such that p(OM N
U) C OH,, in the sense of Definition then the inward direction corre-
sponds to (the image of) any vector field of the form u+ fd,, along 0H,, (in
the quotient bundle Ny;0M), where u is tangent to OH,, and f > 0. Simi-
larly, the outward direction corresponds to such a vector field with f < 0.

Therefore, NyyOM admits a collection of local trivializations
P NM@M‘U{‘]@M — (UﬂaM) x R

such that ®~!(e1) corresponds to the outward direction, where e; denotes
the constant section 1 of the trivial bundle. For these trivializations, the
transition maps are positive. Thus, by Proposition the line bundle
Ny OM is trivial.
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Moreover, there is a natural correspondence between the two possible trivi-
alizations of NyOM (on each connected component of M) and the choice
of outward or inward vector fields along OM.

Suppose det(T'M) — M x R is a trivialization that describes the chosen
orientation on T'M. Along OM, the short exact sequence above induces a
canonical isomorphism

det(TM)|pns = det(TOM) @ NpOM.

Since M is orientable, det(7'M) is isomorphic to the trivial line bundle. From
the discussion above, NyyOM is also trivial. We conclude that det(T0M) is
trivial as well, and therefore OM is orientable.

To describe a convention for defining the induced orientation on M, we
need to specify when a frame for TOM (at a point on the boundary) is
considered oriented. Given an orientation on T'M, we define the induced
orientation on TOM so that the isomorphism

TpyM =R - figu(p) ® T,0M, Vp € OM,

is consistent with the orientations on both sides. Here, 7iou(p) is any
outward-pointing vector in T,M. In other words, (vi,...,vm—1) € T,OM is
a positively oriented frame for T,0M if and only if

(nout(p)v U1y ... 7,Um71) € TPM

is a positively oriented frame for T, M. ([l






Chapter 16

Metric

We start by recalling the following definition briefly discussed in Exam-
ple[14.7]

Given a continuous or smooth real vector bundle £ — M, let E Xy E
denote the fiber product of F with itself with respect to the projection map
m: B — M in the sense of Theorem In other words, the fiber of
E xp Eover pe M is Ep X Ep.

Definition 16.1. Given a continuous or smooth real vector bundle £ —
M, a Riemannian metric g on F is a symmetric fiber-wise bilinear map

g Exy F— R
that is positive-definite in the sense that
g(v,v) >0 VpeM, 0#veE,.

A Riemannian metric on a smooth manifold M is a Riemannian metric on
its tangent bundle.

A Riemannian metric on a smooth vector bundle provides a smoothly vary-
ing inner product on each fiber, enabling us to carry out geometry in a
precise and intrinsic way. It allows us to define notions of length, angle,
and orthogonality for sections of the bundle, which are essential for both
geometric and analytic constructions. In particular, a Riemannian metric
lets us decompose each fiber into orthogonal subspaces — for example, iden-
tifying the quotient E/E’ of a vector bundle embedding E’ C E with the
orthogonal complement of E’ in E. This yields a simpler and more intuitive
proof that every short exact sequence of smooth vector bundles splits.

143
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Given a local trivialization
®: Ely — U x RF,
the metric takes the matrix form
(u,v) » v G(z)v  Yu,ve{z} xR

where each G(z) is a continuous or smooth family of &k x k symmetric positive-
definite matrices (depending on ®) and u,v are column vectors.

Given a collection of local trivializations
Dy Ely, — Uy x R¥,

over an open cover {U,} of M, let ®,,3 € GL(k,R) denote the change-
of-trivialization matrix-valued functions of E, and let G, denote the matrix
form of g with respect to ®,. Then,

(16.1) Go =P} ,5G8Pamss YV, p.

Conversely, a collection {G,} of positive-definite k x k matrix-valued func-
tions on {U,} satisfying the compatibility relation above defines a well-
defined metric g on E.

Lemma 16.2. Every vector bundle admits (a plethora of ) Riemannian met-
TiCS.

Proof. Consider an arbitrary collection of local trivializations
Dy: Ely, — Uq x RE,

over an open cover {Uy} of M, and equip each E|y, with the metric g,
corresponding to the standard Riemannian metric on U, x Rk (i.e., Go = Ii).
Let {0q: Uy — [0,1]} be a partition of unity subordinate to the open
covering in consideration. Then the expression

2= 0l
(0%

is well-defined and defines a Riemannian metric on . O

Exercise 16.3. Use a Riemannian metric on any line bundle L — M, to
prove that L admits a collection of local trivializations L|¢, = U, x R over
an open cover {U,} of M such that the change of trivialization maps

(I)QHBZ U, N Uﬁ — R*,
(UaNUg) xR 3 (x,v) = (2, Pasp(z)v) € (UaNUg) x R

are constant +1.
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Exercise 16.4. Generalize the previous result to show that on every vector

~Y

bundle E — M, there exists a collection of local trivializations El|y, =
Us x R¥ over an open cover {U,} of M such that the matrix-valued change
of trivialization maps

Borss: Ua NUs — GL(K,R),
(Ua NUB) x R¥ 3 (z,0) = (2, Pasp(2)v) € (Us NUs) x RE

take values in O(k) C GL(k,R). Further, if the vector bundle is orientable,
we can improve that to SO(k).

Remark 16.5. Note that O(1) = {£1} and SO(1) = {+1}. Therefore, the
statement above implies Proposition [15.8

Exercise 16.6. Show that a Riemannian metric on a vector bundle F in-
duces a Riemannian metric on its dual E*, and more generally on all ten-
sor/exterior products of E.

Definition 16.7. Suppose E — M is a rank r real vector bundle equipped

with a Riemannian metric g, and si,...,s, is a frame for E|y. We say
S1,...,8p is an orthonormal frame if |s;(p)| =1 for all i = 1,...,r and
p € M, and

g(si(p),sj(p)) =0 foralli+#jandpe M.
Here,
lv| = v g(v,v) VpeM, veE,
is the length of a vector with respect to g. Also, the angle between two
non-zero vectors v,v’ € Ej, is given by

cos ! (g(v’vl)> € [0, 7],

o] o]

and the condition g(s;(p), s;(p)) = 0 means that s;(p) and s;(p) are perpen-
dicular.

Exercise 16.8. Suppose s1,...,s, and s},...,s. are two (local) orthonor-
mal frames for (F,g). Show that

SINA...AS =%y A...Asl € A*PE.
Moreover, if E is oriented and both are positive frames in the sense of
Definition [15.16] then

SIA .. A8 =8 A... N5l € A*PE.
Remark 16.9. The previous exercises says that if F is oriented, then every
Riemannian metric g on E determines a unique global section of det(E)

(and thus a unique trivialization of det(F)) that has norm one with respect
to the induced metric on det(E).
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Recall that a metric on a manifold M is a metric g on its tangent bundle.
Every chart ¢: U — V C R™ on M determines a local trivialization of
the tangent bundle with respect to which the metric can be expressed in the
matrix form

guv) =u'Gv, G = |g; = g(0s, )],

such that [gij} is a symmetric positive definite matrix depending on the
variable z € V' C R™. As a symmetric tensor g € I'(M, Sym?(T*M)), g has
the local equation

g|U—ZgZ] da:z®d:1:],

for which we are viewing g as a symmetric tensor in the sense of Defini-

tion [14.0l

Exercise 16.10. If M C N is a submanifold, every metric on T'N induces a
metric on T'M C T'N|ps (by restriction). Consider the two-chart covering of
S? and find the 2 x 2 matrices of the metric induced by the standard metric
on R? to S? in each chart.

A Riemannian metric g on a vector bundle F yields an isomorphism between
E and E* by mapping
v € By g(v,-) € E; = Hom(E), R).

In the case of a metric on a manifold M, this identifies T'M with T*M and
therefore their sections as well; i.e., vector fields with differential 1-forms.
For instance, recall from Section [I2] that associated to every smooth function
f: M — R, we have the differential 1-form df, which locally expands as

df = Zgi dz;.

By the identification above, the vector field V f associated to f, called the
gradient vector field, satisfies

(16.2) g(Vf,") =df.
Suppose V f has the local expansion
V=Y ai 0.

To determine the coefficients a;, apply both sides to the basis vectors d,;
We obtain

i 0
o(V1,0,)) Zazg (O 00,) = D g0 = df (02)) = o1
i=1 J
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Since the matrix G' = [g;;] is symmetric, the above equations for all j =
1,...,m are encoded in the matrix equation
of
al Txl
Gli|=1:
am b

We conclude that

of
al Txl
=9 :
m a?c];

It is customary to denote the inverse of G by [gij ] Therefore, the gradient
vector field of any smooth function f has the local expression

)
vi=Y o,
ij g

in any coordinate chart.

If Y € M is a level set of the smooth function f, then T,,Y = ker(df|,)
coincides with the orthogonal complement of V f(y), because

df(v) =0 <« g(Vfv)=0.

We will talk more about the correspondence between vector fields and dif-
ferential forms in the future lectures.

Exercise 16.11. The length of a parametrized path
~v: (a,b) = M

into a Riemannian manifold (M, g) is the quantity

b
] = / 5(0)] dt,

where ¥(t) = % € Ty 4)M is the velocity vector.

Calculate the length of a semicircle of radius r centered at the origin in the
upper half-plane

H={(z,y) eR*|y >0}

with respect to the metric

_drx®@dr+dy®dy

g
Y2
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Continuous, smooth, or holomorphic vector bundles can similarly be equipped
with a Hermitian metric, which generalizes the standard Hermitian inner
product on C™, given by

C"su,v— ulTEC,

to arbitrary complex vector bundles. Due to the presence of complex con-
jugation in the definition, every Hermitian metric is a smooth object, even
when defined on a holomorphic vector bundle, and the notion of a holomor-
phic metric is thus meaningless.

Remark 16.12. Some sources define the standard Hermitian inner product
on C" to be

C" > u,v—ulv e C.

Adopting this convention will affect some parts of the definition below.

Definition 16.13. Given a continuous, smooth, or holomorphic complex
vector bundle £ — M, a Hermitian metric h on £ is a fiberwise map

h: Exy E—C

that is complex linear in the first factor, anti-complex linear in the second
factor, positive-definite in the sense that

h(v,v) >0 VpeM, 0#v e E,
and conjugate-symmetric in the sense that
bh(u,v) = h(v,u) VpeM, uve E,

A Hermitian metric on a smooth manifold M with a complex tangent bundle
is a Hermitian metric on T M.

Remark 16.14. The real part g = h® of any Hermitian metric b is a
Riemannian metric on the underlying real vector space of E. Note that
h(v,v) € R for all v € E, so the length of a vector can be computed using
either h or h®. The concept of angle, however, is defined using h® alone.

Example 16.15. Suppose M is a holomorphic manifold and b is a Her-
mitian metric on its complex tangent bundle T'M. With respect to any
holomorphic chart ¢: U — V C C™ on M the metric h takes the form

blu = bij(2) dzi @ dz;
i

where H := [h;;] is a positive definite Hermitian matrix (ie. H = H)
depending on the complex variables z = (z1,...,2y,) € V C R™.
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Exercise 16.16. Show that the real part of the Hermitian metric
dz ® dz
h="T
Im(z)
on the upper half plane X = {z € C | Im(z) > 0} coincides with the
Riemannian metric in Exercise [16.11} Show that the action of SL(2,R) in

Exercise [5.6| on H is an isometry, meaning that the metric b is preserved
under the action of elements of SL(2,R).

With a proof identical to that of Lemma [16.2] one can show that every
smooth complex vector bundles admits a plethora of smooth Hermitian met-
rics.

Exercise 16.17. Show that every continuous or smooth complex vector
bundle E — M admits a collection of local trivializations E|y, = U, x C*
such that the matrix-valued transition maps

Borsp: Ua NUs — GL(n, C),
(Ua NUg) x CF 3 (2,0) = (2, Parss(x)v) € (Uy NUs) x CF,
take values in U(k).
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Solutions to exercises

Exercise Fix a metric g on L. Start with an arbitrary collection of
local trivializations ®,: L|y, = U, x R over an open cover {U,} of M and
let

folz) = g(® (2,1), 0, (2,1)) e Ry V€ U,.
Multiplying ®,, with v/ f, defines a new collection of trivializations

Dy =/foPo: Lly, — Uy xR

that identifies gy, with the standard metric on U, x R. Since the the
transition functions

Dyyp: Uy N Uz — RY,
(Ua NUZ) X R 3 (z,0) = (2, Parsp()v) € (Us NUZ) x R

preserve the standard metric on the trivial bundle (U, NUs) x R, we must
have @, 5 = £1. ([l

Exercise As before, fix a metric g on E and wtart with an arbi-
trary collection of local trivializations ®,: E|y, = U, x R¥ over an open
cover {U,} of M. It is a result in linear algebra [HJ13| Chapter 7] that
every semi-positive matrix admits a unique semi-positive square root. A
continuous or smooth family of semi-positive matrices also admits a unique
semi-continuous or smooth family of positive square roots. Let G, denote
the semi-positive matrix-valued function of g with respect to ®, and

Uy x R¥F — U, x R¥, (x,v) — (2,04(x)v)

denote the bundle isomorphism corresponding to ©, = v/G,. Multiplying
®, with ©, defines a new collection of trivializations

&)a = @a : q)a
that identifies gly;, with the standard metric on U, x R¥. Since the the
transition functions
Bosp: Uy N Uz — GL(0, R)

preserve the standard metric on the trivial bundle (U, NUg) x R*, we must
have $QHB € O(k). Further, if the vector bundle is orientable, we can start
from a collection of local trivializations compatible with the orientation and
the modification above preserves this property. Therefore, &)Oﬁg € O(k)
and det(®,. ) > 0 which implies B, 55 € SO(K) . O
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Exercise As we mentioned above, a Riemannian metric g on a vector
bundle E yields an isomorphism between F and E* by mapping

v € By — g(v,-) € E; = Hom(E,, R).

This isomorphism yields a metric on E* such that if ey, . .., e is an orthonor-
mal basis for E, then the dual basis e7,..., e} is an orthonormal basis for
Ej. These two bases induce bases for any tensorial product of E and E*
and thus define metrics on them for which the induced basis is orthonormal.
Changing e, ..., e; to another orthonormal basis corresponds to multipli-
cation by some B € O(k). The induced bases also change by an orthogonal
matrix. So the definition above is well-defined. O

Exercise As we mentioned above, every two orthonormal frames are
related by multiplication by a matrix valued function B that takes values in
O(r). Suppose s1,...,s, and s,...,s. are two (local) orthonormal frames
for (E, g). Then,

SiA. NS =det(B) siA...ASp=E81 AL A sy

Moreover, if E is oriented and both are positive frames in the sense of Def-

inition [15.16] then B € SO(r). O

Exercise [16.10L The chart maps are

1

i Us =5\ {ps} = R?, (y1,y2) = @+ (x0, 1, 22) = m(m,m)-

with the inverse

cpg:lz R? — R3,
1

(y1,y2) — (o, 21,%2) = 54—
yi+ys+1

(£i + 45 —1),251,202) -

In order to find the matrices of the induced metric on S? in each chart, we
need to find the vector fields dpi'(dy,) and dpi'(9y,) and calculate their
inner products. We have

& =dpi'(0y,) = (Fdy1,2+2(y3 — v3), —4y1y2)

(¥ +y3 +1)2

Lo = dpL' (9y,) = (£dyo, —4y1y2,2 4+ 2(y7 — 13)) -

(v + y3 +1)?
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We conclude that

822 =811 =C1- &1
1
(162 A A2 — ) 4 812 — ) + 160212
SRS (16 (y3 — 1) +8(y3 — y1) + 16y7y3)
4 4
U =
W+y+D 7T (R g3+ 1)
812 = 81 =1 - &2
_ (16y1y2 — 8yrys + 8y (yt — v3) — 8yiye + 8yrya(ys —wi)) _
(yi +93 +1)* ’
i.e. th matrices of the induced metric on S? in each chart are a multiple of
the standard metric

4

[gij(y)] = mlz

O

Exercise [16.11] The semicircle of radius r centered at the origin can be
parametrized by angle:

v(0) = r(cos(#),sin(h)) 0< 6 < .

We have i
4= d% = r(—sin(0)d, + cos(0)d,).
Therefore,
oo rs(OP ¢ rPeos(0) 1

r2sin(6)?2  sin(6)?°

™ 1
'”’—/0 sm(a) 0 = >

Exercise [16.16, With z = z + iy, we have
dz = dz + idy.

We conclude that

Therefore,
dz ® dz = (dv + idy) ® (dr — idy) = dr ® dx + dy ® dy.
Since Im(z) = y, we get Show that the real part of the Hermitian metric

dz ® dz dr ® dr + dy ® dy
Re = .
Im(z)? V2

Recall that
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acts on H by
s palz) = az+b
PAE = L d
Therefore,
_alcz+d)—claz+b),, 9
dpa(0,) = CETIE 0, = (cz+d) “0,.
We get
lez +d|™4
dpa(8.), dpa(8,)) = -2
h(dea(d.),dpa(0.)) Tm(pa ()2
We also have
Im az+b\ _ Im (az +b)(cz + d)
cz+d lcz + dJ?
Im aclz|? +bd 4+ adz + bcz\ y
B lez + d|? ez +dF
Therefore,
1

h|<pA(z) (d(pr(aZ)ad(pA(aZ)) = ? = h|z(az,az)-

We conclude that the metric b is preserved under the action of elements of
SL(2,R). O

Exercise Fix a Hermitian metric h on E. Given a collection of local
trivializations

Dy E|y, — Uy x CF,

over an open cover {U,} of M, let ®, 3 € GL(k,C) denote the change-of-
trivialization matrix-valued functions of E, and let H, denote the matrix
form of b with respect to ®,. Then,

Ho =9, s Hz®og VP

Conversely, a collection {H,} of positive-definite Hermitian k x k matrix-
valued functions on {U,} satisfying the compatibility relation above defines
a well-defined Hermitian metric b on E.

It is a result in linear algebra [You88| Section 7.4] that every (continu-
ous or smooth family of) semi-positive Hermitian matrix admits a unique
(continuous or smooth family of) semi-positive Hermitian square root. Let

U, x CF — U, x CF, (z,v) — (2,04 (z)v)

denote the linear transformation corresponding to ©, = v/ H,. Multiplying
®, with ©, defines a new collection of trivializations

(I)a:@a'q)a
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that identifies h|y;, with the standard Hermitian metric on U, x CF. Since
the the transition functions

By sp: Uy N Uz — GL(n, C)
preserve the standard Hermitian metric on the trivial bundle (U,NUg) x CF,
we must have ®,,,5 € U(k). O



Chapter 17

Differential forms

For every vector space V, recall that the k-th exterior product A*V is defined
as the quotient of
V=V .oV
k times

by the subspace generated by differences of the form
v1®--'®vk—€(0)vg(1)®"'®Ug(k) VoeS,

where (o) € {£1} denotes the sign of the permutation . For k, k' > 0, the
natural product map

VR g Ve yektE)
descends to a wedge-product map
AV @ ARV — ARy
that sends (v1 A~ Avg) @ (Vg1 A -+ A Ugtir) tO
VLA ANV ANVgg1 N AN Uyt

and extends linearly to arbitrary linear combinations of such generators.
Likewise, for any vector bundle £ — M, there are surjective wedge-product
bundle homomorphisms

(17.1) ANE@ A E — ANMF B

For instance, if rank F = r, F is orientable, and k + k' = r, then A"F
is isomorphic to the trivial bundle O = M X R or M x C. Any choice of
isomorphism A"E — O then induces an isomorphism

AMNEQAN*E — O
that identifies A*E with the dual of A" "*E.

155
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Exercise 17.1. Let V be an n-dimensional vector space F = R or C. Show
that every a € A"~V is the wedge of n — 1 vectors; i.e.

a=viN---Nv,_1, v, €€VVVi=1,...,n—1.

For n = 4, give an example of & € A?R* that can cannot be written as
v1 N\ Vg,

Exercise 17.2. Let 7 € A2V where V is some vector space over F = R or
C. Show that there exists a basis e, eg, .... for V' such that

n=-eNex~+---+eg_1ANea

for some r > 0.

The exterior products of the cotangent bundle play a central role in differen-
tial geometry, both in the smooth and holomorphic settings. Given a smooth
or holomorphic manifold M, sections of A¥T*M are called differential k-
forms and are fundamental objects in modern geometry and mathematical
physics: they provide a coordinate-free language for multivariable calculus,
encode topological invariants through de Rham cohomology, and generalize
holomorphic functions in the complex analytic context. In the holomorphic
category, the sheaves of holomorphic differential forms carry rich algebraic
and geometric information, playing a key role in Hodge theory and the study
of complex and Ké&hler manifolds. In this section, we delve into these def-
initions. The wedge product defined above turns the space of differential
forms into a non-commutative algebra.

Definition 17.3. Given a smooth manifold M, a differential k-form on
M is a section of A*T*M. The space of differential k-forms on M will be
denoted by QF(M).

If p: U — V C R™ is a chart with coordinates (z1,...,z;) on R™, then
dxy,...,dz, form the natural frame for 7" M|y = T*V, and every k-form
n on V can be written as

n= Z Wiy owiy, (@) dciy N -+ Ndxg,
i1 <<,
where the coefficients a;,...;, are smooth functions on V.
Globally, given an atlas
A={pq: Uy = Vo }

on M, a differential k-form n on M corresponds, by (12.1)), to a collection
of local k-forms 7, on V,, satisfying the compatibility condition
(17.2) 77a|Vg,a = SOZHB (77/6|Va,ﬁ) J
on the overlap V,, g = ¢a(Us NUg) = Vo N ‘P;iw(vﬂ)'
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Here, the pullback map
Parspt X (V) — O (Vo)

is induced by the pullback of 1-forms. If z = (x1,...,x,,) are coordinates
on Vy and y = (y1,...,ym) are coordinates on Vg, with y = y(z) = @ p(2)
on the overlap, then 7z has the form

Z biy - lk dyn ‘/\dyilw
11 <<l
and the pullback is given by
Spou—>ﬁ 775 Z bi,.. lk ) dyiy () A= A dyiy ().
11 <<l

To express the right-hand side in terms of the basis dx;, one applies the
chain rule to each 1-form dy;, expanding it as

dyj(x Z ay] dx;.

Example 17.4. For k = m = dimM, ng = b(y)dy1 A -+ A dym, Na =
a(x)dxy A -+ Adzxy, and the compatibility relation reads

Parsp(ns) = b(y(x)) dyi () A+ A dym ()

= b(y(x)) det(dpasp)dri A -+ ANdxy, = a(z) dzy A - A dzp,.

Therefore,
a(z) = b(y(x)) det(dpasg)-

For k = 0, A°T*M = M x R; therefore, a differential O-form is nothing but a
smooth function on M. For k = 1, as we briefly studied earlier, a differential
1-form is a section of cotangent bundle T* M. The duality pairing

(M, TM) ® QM) — C*(M,R)

between smooth vector fields and differential 1-forms takes as input a pair of
a vector field £ and a differential form n and returns a function 7(£) obtained
by point-wise action of n on £&. More generally, we have the following.

For every k > 1, there is a natural degree-decreasing pairing
D(M, TM)® QF(M) — C*1(M,R)
called contraction by a vector field, denoted by
Q1N 1en
between every vector field ¢ € T'(M,TM) and k-form n € QF(M).
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More precisely, every n € QF(M) is a pointwise skew-symmetric k-linear
map on the tangent bundle, and t¢n is defined by inserting { as the first
input. In other words, for every (i,...,(x—1 € I'(M,TM), the (k—1)-form
tegm acts as

(eem)(Crs - Go—1) = n(&; Crs - Co—1)-
By , there is a wedge product map
QF (M) @ QF (M) — Q" (M)
that is locally given by

11 <<l J1<-<Jps
Z Z ail“'ikbjl'“jk/ dﬂjil VAN dﬂ?zk AN dSle VANEEIWAN dek,.
11 < <igy J1 <o <Jps
Of course, if the index sets {i1,...,ix} and {ji,...,jx} have an index in
common, then
dxil /\---/\dxik /\d.il?jl /\'“/\dl’jk, =0.

Otherwise, one can reorder the union into increasing order at the cost of
possibly introducing a sign.

Also, with the same notation, the contraction between

§=) b0,
j=1

and
n = E gy, d.ﬂ?il VANERRIVA d.%‘l'k
11 <<l
returns

k
Lem = Z Z(—l)cilbicail...ik dxiy N+ Ndxg,_, Ndxg N Ndwg,,.

i1 <<y, c=1

The reason for the sign (—1)¢~! is that we first move dx;, to the first po-
sition before evaluating it on b;, 0, . This requires commuting past ¢ — 1
differentials, introducing a sign of (—1)°1,
Note that, since every differential k-form is a skew-symmetric k-linear map
on sections of the tangent bundle, we have

teote = 0.
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Among all differential forms on a smooth manifold, those of top degree —i.e.,
forms of degree equal to the dimension of the manifold — play a distinguished
role in extending the notions of classical calculus to the setting of manifolds.
These forms are precisely the ones that can be integrated over oriented
manifolds and thus serve as the foundation for a coordinate-free formulation
of integration theory, culminating in powerful generalizations such as Stokes’
theorem.

Definition 17.5. A volume form on a smooth m-manifold M is a differ-
ential form w € QYP(M) := Q™(M) that is nowhere vanishing. In other
words, a volume form is a nowhere zero section of A™P(T*M).

Since there is a one-to-one correspondence between nowhere vanishing sec-
tions of a line bundle and its trivializations, a smooth manifold M admits a
volume form if and only if A*P(T*M) = M x R. As A*P(T*M) is the dual
of AYP(T'M), the triviality of one implies the triviality of the other. Hence,
M admits a volume form if and only if it is orientable.

Furthermore, there is a one-to-one correspondence between volume forms
and isomorphisms det(T*M) = A*P(T*M) = M x R, and between orienta-
tions on M and volume forms up to multiplication by a positive function.
If p: U — V C R™ is a chart with coordinates (z1,...,x;) on R™, then
every m-form w admits a local expression

wlp = f(z)dxy A+ Ndxy,

for some smooth function f(x). If w is a volume form, then f(x) is nowhere
zero. If M is oriented and ¢ belongs to the oriented atlas of M, then a
volume form is compatible with the orientation if and only if f(z) > 0.

Once again, an orientation corresponds to a choice of trivialization
AYP(T*M) = M x R

up to rescaling by a positive function, and a volume form compatible with
the orientation corresponds to a positive multiple of the constant section 1
of M x R.

Proposition 17.6. Suppose M is an oriented smooth manifold and g is
a Riemannian metric on M. If op: U — V C R™ is a chart with coor-
dinates (x1,...,2y) on R™, let [g;;(x)] denote the positive-definite matrix
representing the metric g in these coordinates. Define the local m-form

W = y/det[g;;(z)] dx1 A - A dyy,.

As p varies over the positively oriented charts of M, the locally defined forms
wg,, agree on chart overlaps and therefore assemble into a global volume form
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on M, denoted by wg, which is canonically associated to the metric g and
the chosen orientation on M.

In other words, every Riemannian metric on an oriented manifold deter-
mines a canonical volume form.

Proof. Suppose ¢1: Uy — Vi C R™ and @9: Uy — Vo C R™ are two
overlapping charts with coordinates (z1,...,zy) on Vi and (y1,...,Ym) on
V5, respectively.
By (17.2)), the local volume forms wy,, and wg,, are compatible on the
overlap if and only if

Wepr = Ploz(Weeps)-

By , the transformation rule for the metric tensor gives:

det[g;;(x)] = det (dpi [8i;(y)] dprs2) = det(g;;(y)] - det(dprr2)®.
Also, by , the pullback of the standard volume form transforms as:
(17.3) Olno(dyr A+ Adyp,) = det(dpis2) dxg A« A dxy,.

Since both charts belong to the positively oriented atlas of M, we have
det(de1—2) > 0. Therefore, the pullback of wg ,, under ¢1,42 is computed
as:

Pioa(Wega) = Pl ( det[gy; (y)] dyr A -~ A dym)

= /det[g; (y(2))] - @Tsa(dys A -+ A dypm)

det|g;; ()]
=4 ————"= -det(d d < ANdxgy,
det(dp1.2)?2 cildiprsz) daa A !

= /detlg;;(z)] dx1 A -+ AN dayy,

= wgﬂpl °
Thus, the local expressions wg, agree on overlaps, and define a global
smooth volume form on M. O

The proposition above provides a method for finding volume forms on any
oriented manifold. The following result serves the same purpose for mani-
folds realized as level sets of smooth functions in ambient manifolds equipped
with a natural volume form, such as R with the standard volume form
Wstg = dx1 A -+ - ANdxy,.

Lemma 17.7. Suppose f: M — R is a smooth function on a manifold
equipped with a volume form wyy, ¢ € R is a regular value, andY = f~1(q) C
M is the corresponding level set. Also, suppose & is a vector field defined
on a neighborhood of Y (or simply a section of TM|y ) such that & is not
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tangent to Y along Y. Then the restriction wy of tewy to Y is a volume
form onY.

Proof. Since £ is not tangent to Y along Y, we have
TMly =TY @R &.
Therefore, if dim M = m, then for every p € Y and every frame vy, ..., vm—1
for T,,Y, the tuple
(&(p),v1,- s vm-1)

is a frame for T, M. By the definition of a volume form, we have

wM’p(f(p)y U1y .- )Um—l) 7& 0.
It follows that

wy [p(v1, -y Om—1) = (Lewnr)|p(v1, -+ s vm—1) = W |p(&(p); V1, - ., Vm—1) # 0.

Therefore, wy is a volume form on Y. O

The construction above requires a vector field that is not tangent to Y along
Y. A natural way to obtain such a vector field is by considering the gradient
vector field of f with respect to some Riemannian metric on M; see ((16.2]).
This is particularly straightforward when M = R™ with the standard metric.
We can further normalize V f to

v
V£l

to obtain a unit-length vector field that is orthogonal to TY. For this
orthonormal vector field, we have the following.

ﬁ:

Exercise 17.8. Suppose M is an oriented manifold equipped with a Rie-
mannian metric g. Let w denote the volume form of g in the sense of Propo-
sition Suppose f: M — R is a smooth function, ¢ € R is a regular
value, and Y = f~!(q) C M is the corresponding level set. Let gy denote
the induced metric on Y, and let wy denote the volume form of gy-. Also,
let

Vi
VI’

denote the volume form on Y induced via Lemma [[7.71 Show that

n= and Wy = 17w
/
wy = twy,

where the sign depends on the convention for the induced orientation on Y
and the direction of 7.
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Example 17.9. Consider the unit sphere $? = f~1(1) C R3, where f(z,v, 2)
22 4+ y2 + 22. The gradient vector field of f with respect to the standard
metric is

V=20, +ydy + 20.),
which gives the orthonormal vector field
0y + Y0y + 20,
along S2. The volume form on R? with respect to the standard metric is
simply
de Ndy N dz.
Therefore, the induced volume form (area form) on S? is the restriction of
the 2-form
LBy 4y, +20, (dx Ndy Ndz) = xdy Ndz +ydz Ndx + zdx A dy
to S2.

Exercise 17.10. Let w,, denote the volume form of the induced metric on
S™ defined by embedding S™ as the unit sphere in R”*!. Show that on each
open hemisphere xg # 0, this volume form coincides with the restriction of
idacl/\.../\clzlcm
Zo
to S™.

Exercise 17.11. Let M be a smooth orientable m-manifold, and suppose
that w is a volume-form. Show that every point of M is included in a chart

with coordinates (1, z2,...,Ty) such that w = dxy A ... Adz,,. Use this to
prove that a smooth manifold is orientable iff it admits a smooth atlas whose
coordinate transition functions ¢: (x1,z2,...,Zm) — (Y1,Y2,...,Ym) all

satisfy detdyp = 1.
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Solutions to exercises

Exercise Wedging with « defines a non-trivial linear map
V —F, v—aAveA"V =F.

The kernel of this map is an (n — 1)-dimensional subspace of V' generated
by a set of (n—1) vectors vi,...,v,—1. Choose v, € V such that aAv, # 0.
Clearly, vy, ..., vy, is a basis for V. Thus, v1 A --- A v, generates A"V.

Suppose
ANV, =AU A AUy

for some A # 0. Then, both a and Avy A --- A v,_1 define the same linear
maps on V', and therefore they must be equal. We conclude that

a=(Av)) Avg A Avp_q
is a wedge of (n — 1) vectors.
For V = R4, let
a=ejNey+e3ANey e A’RY.
Wedging with « defines a linear map
R* — A’R* =R

given by

er—r e Na=1ug =e; Nes /ey,

ea—> ea N =1ui '=eg Nesg ey,

es—re3 Na=1uq =e1 Neges,

es—r e Na=1us:=e; NeyAey.

The matrix of this linear map with respect to the basis (e, €2, €3, €4) on the
domain and (u1, ug, us,us) on the target is

0100
1 0 00
0 001
0010

which has rank 4.

On the other hand, any decomposable element v; A vo € A’R* defines a
linear map

R* — A’R* >~ R*

of rank 2. Therefore, o cannot be written as vy A vs. U
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Exercise Suppose e, e, ... is an arbitrary basis for V. Then, every
element 1 € A%V is a linear combination

n= Zaijei N ej.
1<j
To write this symmetrically — and since u A w = —w A w for all u,w € V-
we can express 7 in the form

n = Zbije’i A ej,
i3

where b;; = 0 and bj; = —bj; = a;;/2 for all i < j. In other words, once
a basis is fixed, there is a one-to-one correspondence between elements 1 €
A%V and skew-symmetric matrices B = [b;;].

If €], €, ... is another basis, with change of basis matrix © = [6;;] such that
G- Yt
i

then the skew-symmetric matrices B and B’ corresponding to the bases {e;}
and {e,} are related by

B =e’Be.
Therefore, Exercise is equivalent to showing that for every skew-symmetric
matrix B, there exists an invertible matrix © such that ©7 BO is of the form

et _

B
0 1

o [0

i 0 0 ()_

The latter is a classical result in linear algebra; see [Lan89 Theorem 4.4].
(]

Exercise Suppose M is an oriented manifold equipped with a Rie-
mannian metric g. Let w denote the volume form of g in the sense of Propo-
sition Suppose f: M — R is a smooth function, ¢ € R is a regular
value, and Y = f~!(q) C M is the corresponding level set. Let gy denote
the induced metric on Y, and let wy denote the volume form of gy. Also,
let

Vf
V£’
denote the volume form on Y induced via Lemma Show that

— /
n= and wy = Lzw

wy = Fwh,
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where the sign depends on the convention for the induced orientation on Y
and the direction of 7.

Exercise [17.10. The hemisphere S™ N (zy > 0) is the graph of

xo=@(X1,...,Tm) =

over the unit ball B;(0) C R™.

Similarly to Example the volume form w,, is obtained by contracting
the standard volume form dzg A - - - A dx,,, on R™T! with the vector field
xoaxo +--+ xmaxma

and restricting the resulting m-form to S™; that is,

Wi = (Z(—l)ixid:po A Ada A---/\dmm>

i=0 Sm

The question asks us to show that this coincides with

1
(dxl/\---/\dxm>

o

Sm

To show this, we compute the pullbacks of both forms by ¢ and verify they
agree on the domain B (0) of the chart.

We have
* — — o T — Rl oy
pidxg = dp = Z@ixid% = Z gpdwz = Z xodxz.
=1 =1 =1
Therefore,
m . —_
o <Z(—1)’mi dzo A -+ ANdxi A+ A d:vm>
i=0
1 m
= — (:c%d:vl/\---/\dxm%—Zx%dxlA--'/\de’m)
Zo ;
=1
1
= —dri A ANdxp,.
Zo
The computation on the other half is similar. O

Exercise Suppose ¢: U — V C R™ is a chart compatible with
the orientation. With respect to the local coordinates (z1,...,z,) on V we
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have
wlp = f(z)dzy A -+ Adxy,
for some positive function f. At the cost of shrinking U and V we may

assume V = (—e¢,€) x V' for some open subset V! C R™~!. For every

¥ = (z9,...,2m) € V' let

y1(z1,2') = /Om f(t,a")dt.

Since f > 0, y1 is an increasing function of x;. Therefore, the composition

(z1,2") = (y1,7") R™
define a new chart map ¢: U — R" with respect to which

wly =dyr Adxa A -+ A da,.

U -5 (—e,e) x V!

Let M be a smooth orientable m-manifold, and suppose that w is a volume-
form. Show that every point of M is included in a chart with coordinates
(r1,22,...,Ty) such that w = dzy A ... Adzy,.

Covering M with a collection of such charts {¢n: Uy — Vo }, it is clear
from Example that the transition functions a5 = @g o @ ' satisfy
det dp—p = 1. By Proposition the converse holds as well. (]



Chapter 18

Exterior derivative and
cohomology

The exterior derivative is a fundamental operator in differential geometry
that extends the concept of differentiation to differential forms on smooth
manifolds. It takes a k-form to a (k + 1)-form in a way that generalizes
classical notions such as the gradient, curl, and divergence from vector cal-
culus. Defined intrinsically and without reliance on coordinates, the exterior
derivative d is linear, satisfies the graded Leibniz rule with respect to the
wedge product, and is nilpotent: d> = 0. Notably, such a canonical differen-
tial operator does not exist on the exterior powers of the tangent bundle or
on arbitrary tensor fields; defining a derivation in those contexts typically
requires additional geometric structure (such as a connection). In contrast,
the cotangent bundle and its exterior algebra — i.e., the differential forms —
admit a natural and elegant differential calculus, making them more flexible
and powerful tools for encoding geometry and topology.

Recall that given a smooth function f: M — R, the derivative of f can be
seen as a differential 1-form that in local coordinates takes the form

(18.1) df =) ifda:i.

The operator d: Q°(M) — Q' (M) locally defined as above is globally well-
defined because of the chain rule and how a collection of local differential
forms define a global form in . The same reasoning extends to all
differential forms and yields exterior differentiation maps

d: QF (M) — QM (M)

for all £k > 0. More precisely, first, we prove the following lemma.

167
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Definition 18.1. Given an open subset V' C R™ and any k-form
n= Z @iy, (x) dxciy A -+ N dg,

11 <<tk
on V, the exterior derivative of 7 is the (k + 1)-form

Z dag, .. Zk YAdzi A A dx;,,

11 <o <tp
where da;, ...;, () should be expanded as in (18.1). In particular, d(dx;, A
Lemma 18.2. Pullback of differential forms by any smooth map
f:VCcR™ — V' cR"

commutes with d; i.e. f*od=do f*.
Proof. Let (z1,...,zm) and (y1,...,y,) denote the coordinates on the do-

main and target, respectively, with y = y(x) = f(z). Since both f* and d
are R-linear, it is enough to confirm the claim on a single term

n = b(y) dyi, N--- Ndy;,.

We have
* Ay Ay
o0 = bly(@)) dys, (@) A - -Adys (@) = bly(z)) Y 8%}1 = 8%1; dxj A - -Ndj,,
F1seenndk
where the sum runs over all tuples (j1,...,ji) with distinct indices j, # Jp
for a # b.
Therefore, using the product rule,
33/2‘ Oy
d — d L., EYdes A« ANdes
f = Z ( (9:Zij1 6:%> T Lk

7.7k

e dr: N--- Ndx;
Z al,]l al,jk L1 L,

8yil aylk ) )
x)) Z d <8le 81’jk> dzj, A--- Ndzj,
]17"".7k
= db(y(x)) A dyi, (x) A= A dyi ()

Oyiy Oy,
9 (8x]-1 e 0xj,

83:]6

+ b(y(zx)) Z dxj, Ndxj, N--- Ndxj, .
J0J15e-50k
On the other hand,

dn =db(y) Ndyi, N--- Ady,
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and
frdn = db(y(z)) A dyi, (x) A--- A dy;, (2).

Therefore, to prove the lemma, it suffices to show that

a ayzl . 8y2k
Z Oxj, Bm]k

dr; Ndz;, N---Ndzx; = 0.
81’30 Jo J1 Jk

jo’jlz"'mjk
By the product rule, we can expand the expression as

k
8 yla 8y7«:
Z Z P 1 (9%']‘6 dl’jo VAN dl’jl VANEIVA dl’jk.

T O
J0sj1ydk a=1 90V Ja

Now observe that switching jg and j, keeps Bf %’; unchanged but flips the

sign of the wedge product. Therefore, each term in the sum appears with
equal magnitude and opposite sign, so the total sum vanishes. O

Lemma 18.3. The operator d in Definition satisfies dod =0 and
d(m Anz) = dm Anz + (—1)%80)p A di.

Proof. The proof of the first statement is similar to the vanishing argument
above. We have

dod(a(x)dxiy N--- Ndz;,) = dz

a ZO/\dZCil/\'--/\d:Eik
T

&a(z)

i 8%/85610

10,8

da% ANdxiy Ndxg, N A d%ik.

Switching ip and 4(, keeps the second derivative term unchanged but negates
the wedge product. Hence the terms in the double sum cancel in pairs.

For the second statement, apply the product rule. To apply d to 72, we must
move it before 71 and then return dny to the correct position. The first
step introduces deg(n;) deg(n2) transpositions, and the second introduces
deg(n1)(deg(n2) + 1). Thus, the total sign is

(—1)2des(m) deg(n2)+deg(m — (_7)deg(m)
O

Corollary 18.4. Given a smooth manifold M, for every k > 0, there is a
global exterior differentiation map

(18.2) d: QF (M) — Q¥ (M)
such that:
(1) locally in every chart it is given by Definition [18.1];
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(2) dod=0;

(3) d(m Am2) = dm Az + (=1)Fn A dny for all ;€ QF(M) and
1 € QY(M);

(4) if f: M — N is a smooth map between manifolds, then f*od =
do f*.

Proof. Recall from ([17.2)) that given an atlas
A={pa: Uy = Vo }
on M, a differential k-form n on M corresponds, by (12.1)), to a collection
of local k-forms 7, on V,, satisfying the compatibility condition
(18.3) NalVea = o (181Vas)
on the overlaps V,, g. By Lemma [18.2] for every o and § we have

dne = d (95 sm8) = hsp (dng)

on the overlaps. Therefore, the locally defined exterior derivatives d are
compatible and define a global exterior differentiation map

d: QF (M) — Q¥ ().

Item 1 holds by construction. Items 2—4 are local properties and thus follow
from the two lemmas above. ([

Considering the operators d in ([18.2) for all & > 0 results in a sequence
(18.4) 0— QM) -5 ol (m) L o — iimM () Ly g
that is an example of a cochain complex over the field of real numbers.

Definition 18.5. Suppose {4} is a collection of abelian groups or vector
spaces, and

d d
-~-—>Ak,1—>Ak—>Ak+1—>---

is a sequence of additive (or linear) maps between them. We say this is a
cochain complex if dod = 0. The cohomology groups of a cochain
complex (A,,d) are the quotient abelian groups or vector spaces

ker(d: Ak — Ak+1)

k —
i (A.’d) N Im(d: Ak—l — Ak) ’

An element in the kernel of d: Ay — Ay is called closed, and an element
in the image of d: Ai_1 — Aj is called exact. Thus, the k-th cohomology
group measures closed elements in A up to addition by exact ones.
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The field of homological algebra provides a general framework for study-
ing algebraic structures through sequences of abelian groups or vector spaces
connected by differential operators, known as cochain or chain complexes.
These complexes arise naturally across many areas of mathematics, includ-
ing topology, geometry, and algebra, and their associated cohomology groups
capture essential structural and invariance properties.

In this course, we focus only on one particular example: the so-called de
Rham cochain complex in , where the vector spaces are the spaces
of differential forms on a smooth manifold and the differential is given by
the exterior derivative. The resulting cohomology groups are called the de
Rham cohomology groups and are denoted by

ker (d: QF(M) — QF1(M))

Hgp(M,R) = Im (d: QF=1(M) — Qk(M))

or simply H*(M,R).

Example 18.6. The 0-th cohomology group of any manifold is the vector
space of locally-constant functions on M. Therefore, if M is connected, then

HO(M,R) =R.

Exercise 18.7. Find the degree one de Rham cohomology groups of R and
St

Exercise 18.8. Show that wedge product between differential forms de-
scends to a product structure between de Rham cohomology classes making
the total cohomology group H*(M) = @, H*(M) a ring.

We will learn about a few results and techniques for calculating the coho-
mology groups of more complicated spaces in future sections.

When dealing with non-compact manifolds such as R™, it is often useful
to restrict attention to differential forms with compact support. For every
k>0, let Q(M) c QF(M) denote the subspace of differential k-forms with
compact support; that is, every n € QF(M) vanishes outside a compact
subset of M.

For each k£ > 0, the exterior derivative map
d: QF(M) — Q¥ (M)
restricts to a map
d: Q8 (M) — QF ().
Therefore, we obtain a compactly supported de Rham complex

(18.5) 0— QM) L (M) L . — QiimM(pp) 4y,
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which gives rise to the compactly supported de Rham cohomology groups
ker (d: QF (M) — Q’g*l(M))

H* o (M,R) = ;
an(M,R) m (d: O (M) — Q5(M))

c

often denoted more simply by H, f (M,R). If M is compact, then these groups
coincide with the usual de Rham cohomology groups H*(M,R). For non-
compact manifolds, however, the compactly supported cohomology groups
differ in general and provide additional topological information.

Exercise 18.9. Find the compactly supported de Rham cohomology groups
of R.
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Solutions to exercises

Exercise Since dimR = dim 8! = 1, every 1-form on R and S' is
automatically closed. We need to find the subspace of exact 1-forms.

Starting with R, every 1-form is a function multiple of dx where x is the
global variable of R. For every smooth 1-form f(z)dz, let

l%x):hémf@ﬁﬁ.

By the Fundamental Theorem of Calculus, dFF = fdz. Therefore, every
1-form is exact and H'(R,R) = 0.

Thinking of S! as R/Z where Z acts by translations by integers, since the
1-form dx on R is invariant under the action of Z, it descends to a nowhere
vanishing 1-form on S'. Furthermore, every 1-form on S! is of the form
f(x)dz for some function f on S' which corresponds to a 1-periodic (i.e.
f(z+1) = f(x)) function on R. For f(z) dz to be exact on S!,ie. f(z)dz =
dF(x) for some 1-periodic function F', we must have

1
O:HU—HW:/f@ﬁ.
0
Conversely, if fol f(t)dt = 0, the function F(x) = [ f(t)dt is 1-periodic
and dF = f(x)dx. For every l-form f(x)dx, we have
f(z)dz = adx + (f(x) — a) dz,
where a = fol f(t)dt and fol(f(t) —a)dt = 0. We conclude that f(z)dx and

a dzx have the same image in the quotient space
B Ql(sh)
Im (d: QO(S1) — QI(S1))
Therefore, the class of dz in Hiz (S, R) is a generator and
Hig(SL,R)=R. O

H(%R(SI’R)

Exercise [18.8l To show that wedge product between differential forms
descends to a product structure between de Rham cohomology classes, we
must show that

e the wedge product of two closed forms is closed;

e the wedge product of a closed and an exact form is exact.

If 1 and 72 are two closed forms, then by Corollary [I8.413, 11 A 72 is closed
as well.
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Further, if 71 = d?, then
d(l?/\?h) =ddAntIANdn =dd Any=n Ana,
proving the second property listed above. O

Exercise The only compactly supported function f satisfying df = 0

is the trivial constant function 0. Therefore,
HY g(R,R) = ker (d: Q2(R) — Q}(R)) = 0.

C

If a compactly supported 1-form f(x)dx is of the form dF for some com-
pactly supported function F', then

/OO F(t) dt = F(+00) — F(—oc) = 0.

Conversely, if [*_ f(t)dt = 0, then the function

F(x) = / f(t)dt
—00

is compactly supported and satisfies dF' = f(z) dx. Therefore, the R-linear
map

/: QLR) — R, f(a:)d:z:»—>/ f(z)dx
descends to an isomorphism

% (R)

c H! g(RR) = ¢

/ car (B B) = 70 (d: QO(R) — QL(R))

=R



Chapter 19

Curl, Divergence, and

dod =0

Two fundamental identities in 3-dimensional vector calculus are
(19.1) Vx(Vf)=0 and V-(VxX)=0.

The first identity states that the curl of a gradient is always zero, mean-
ing the gradient of a scalar field is irrotational. The second states that the
divergence of a curl is always zero, implying that the curl of a vector
field is divergence-free. These identities are consequences of the symmetry
of second derivatives and form the backbone of many theoretical results in
vector calculus. In physics, they are deeply tied to the structure of Maxwell’s
equations: for example, the identity V - (V x X ) = 0 ensures the absence
of magnetic monopoles in classical electromagnetism. Similarly, the irrota-
tional nature of conservative force fields, such as gravitational or electro-
static fields, follows from V x (Vf) = 0. These properties are also central
in the formulation of potential theory and in the analysis of fluid flow and
electromagnetic fields.

In this lecture, we show that these results are equivalent to the identity dod
on differential forms.

Definition 19.1. For a smooth function f: V C R?® — R, the gradient
vector field of f is

3
of
i=1

175
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This is a special case of ([6.2]) where the standard metric on R? is used. For
a vector field

3
X = Z a;(x) Oy,
i=1
on V C R3, the curl of X, denoted by V x X, is the vector field
Oz, Oy Ogg

_ o0 98 90
VxX=det |75 35 es |
aq a9 as

which expands to

Vx X = <8a3_ 8a2> D, + <8a1 8a3> Oy + <8a2 8a1>8x3.

Oxy  Oxs O3 Oz1 dr1  Oza
Lastly, the divergence of a vector field X is the scalar function
V. X Oa;(z)
=1 81‘1

The divergence of a vector field admits a generalization to any manifold
equipped with a volume form, which we will encounter later in this lecture.
In contrast, the notion of curl is intrinsically three-dimensional.

Theorem 19.2. For an open subset V. .C R3, let Vect(V) denote the space
of smooth vector fields on V. Then the following diagram commutes:

C®(V,R) —> Vect(V) —> Vect(V) —> C(V, R)

lid l16.2 lb(—)wstd i'wstd

QW) —L > o (V) —L> (V) —L> 03(V)

Here, the first column is the identity map between smooth functions; the sec-
ond column represents the identification in between vector fields and
1-forms using the standard metric on R3; the third column is an isomor-
phism mapping a vector field X to the 2-form

txwsta = tx(dzy Adzg A dxs);

and the last column identifies functions and 3-forms by mapping o function f
to the 3-form f wgq = f dxiAdxaoAdxs. In other words, there is a dictionary
(i.e. identification of vector spaces) between the top and bottom rows such
that the wvector calculus identities in correspond to the differential
form identity dod = 0.

Proof. The proof is purely computational, as all the maps have explicit
formulas. We go over each square for the sake of completeness.
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In the first square, using the standard metric from ((16.2)), the gradient V f
corresponds to the differential

3
of
i=1

The second square commutes because

da da
IV x XWstd = <6xz - 8952) dxo A dxs
daq dag Oay day
— — —— | dxs ANd — — —— |dr1 ANd
+ <8l‘3 8$1> 3 T1+ <8$1 83:2 o 2
is equal to
80,1 8@1
d(ay dzy + ag dxe + azdxs) = ——— dxy Adry — — dx1 A dxs
6:1:2 8a:3
+ %dxl A dxy — %dl‘g/\dﬂjg
6951 8:133
+ %d.%'l A dxs + %dl‘g/\dwg
o0x1 0xo
aag 8a2
=(=———=—=)dxo ANd
(axg 8:(:3) 2 3
8a1 aag
— - —)d d
+ <3$3 81‘1) xr3 A\ dx
6a2 8a1
— — — | dx1 A dxo.
+ <6:L’1 81'2) 1 2

Finally, the last square commutes because

d (L(Zai %)wstd) = d(ay dzo A drs + ag drs A dry + a3 dry A dxs)

3
_ ( aal(x)) dz1 A dzs A das.

ox;
i=1 ¢

O

Definition 19.3. Given a smooth manifold M with a volume form w, the
divergence of a smooth vector field X with respect to w is the unique
smooth function f = Div,,(X) such that

diixw) = fw.

Note that the interior product ¢ x decreases the degree of a differential form
by 1, and the exterior derivative d increases it by 1, returning to the degree
of w. Since every top-degree form on M is a scalar multiple of the volume
form w, the function f is well-defined.



178 19. Curl, Divergence, and dod =0

Definition 19.4. Given a smooth manifold M with a metric g, let w, de-
note the canonical volume form associated to g. For every smooth function
f: M — R, the Laplacian of f, denoted by Af, is the function

Af :=Div,, (Vf),
where V f is the gradient vector field associated to f as in (|16.2)).

Exercise 19.5. Find an explicit formula for Af in terms of the partial
derivatives of f and the components g;; (z) of the metric in an arbitrary
local coordinate chart z = (x1,...,2y). Also, if a vector field X has local
equation X = . a;(x) Oy,, write an explicit equation for Div,,, (X) in terms
of g;; and partial derivatives of a;.

Exercise 19.6. Consider the upper half plane H with the Poincare metric
2 2

0

0
X=0+2-9*)—+ Qxya—y.

ox
Show that
Divwg(X ) =0.

Is X gradient of a function?
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Solutions to exercises

Exercise First, we find an explicit formula for Div,,, (X).

Following the definition, we have

d(LX\/det g ()] dzy /\---/\dmm) =
d( a;v/det[gy (z)] dxy A - /\d/:;i-~/\da:m> =
= 1

$- o (a det[gm )

=1

™ da; 1 (& ‘Olog det|gy,]
(Z 830-) wg + 5 (Z a; oz Wg.

i=1 " i=1

dri N\ - Ndx,, =

.

Therefore,

] da; 1 & 0log det[gy,]
Divas (X Z@xl 32

Next, in order to compute A f, we apply the formula above to

)
X:szzgma%am
i, J

Since
Zg (91:]
we get,
g 8f 8f Jdlog det[gkl]
ij =i =2
Af= Z a ax Z z: dr; g dz;  Omi

1-]
If we directly use the formula for Laplacian we get the more compact formula:

of
/7det e Z&x < det|gy (z)] g7 &U)

Remark 19.7. Note that the Laplacian is a second-order differential oper-
ator whose principal (second-order) part is

2
8 G
— 81’18.%']"
17]
corresponding to the action of the inverse metric on the Hessian of f. The
remaining lower-order terms account for the variation of the metric tensor
and the volume form.
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O

Exercise [19.6, The volume form of g with respect to the counter clock
wise orientation is
Wg = vy 2dx A dy
Therefore
LXWg = (y~ 2+ 2%y~? — 1)dy — 2zy dz,
and
dixwg = (2:Cy_2 — 2xy_2) de Ndy =0

For X to be the gradient of a function f, we must have

af of 0 0
=y? (220, + =~ — (1 4+ 22— )= +22y—
Vi=y <6x6 +8y0y> 1+ y)6x+ xygy,
or equivalently,
of _ 2.2 of _ -1
(19.2) 5~ Y (I14+2°—y%), and 9y 2ry .

Integrating the second equation with respect to y gives

f(z,y) = 2xn(y) + g(x).
Differentiating this identity with respect to x yields
0
5 = 2n) +4'(@).
of

Equating with the earlier expression for 7 gives
2In(y) +¢'(x) =y (L +2° —¢?),
or
g (x) =y (1 +a? —y*) —2In(y).
This is a contradiction, since the left-hand side depends only on x, while the
right-hand side depends on both = and y.

One can also obtain a contradiction by differentiating the first equation in
(119.2)) with respect to y, and the second one with respect to z, and observing
that the right-hand sides do not agree.

O



Chapter 20

Integration and Stokes’
Theorem

In multivariable calculus, we learn to integrate functions over regions in R™.
In this lecture, we take a new point of view: we interpret a multivariable
integral

/ flxy,. .. xm)dey -+ - dxgy,
\%

as the integral of an m-form, namely f(x1,...,2y)dz1 A+ Adzy,, over the
region V C R™ or V C H,,,. This perspective not only clarifies the geometric
meaning of the integrand, but also extends naturally to general manifolds,
once orientation is properly accounted for. In fact, the familiar change of
variables formula involving the Jacobian determinant fits seamlessly into
this framework and shows that integration of top-degree forms on oriented
manifolds is well-defined.

Remark 20.1. Since manifolds with boundary play an important role in
integration on manifolds, we will be more precise in this section and take
charts to have image in H,,, to account for the possibility of boundary.

Theorem 20.2. Suppose M is an oriented smooth m-manifold. There exists
an R-linear map

/M: QM) —R

with the following property: if ¢: U — V C R™ is a chart compatible
with the orientation, and n = f(x)dxy A -+ A dxy, is an m-form compactly

181
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supported in U, then

/ n= flxy,. .. xm)dey - - - dxgy,
M R™
in the sense of multivariable calculus.

Proof. Fix n € Q*(M) and let K be the (compact) support of 1. Choose
a finite collection of charts
C={pi: Ui —V; CHphi<i<ss

compatible with the orientation, such that

¢
K C U U;.
i=1
If M # K, let Uy C M be the complement of K. Let {g;: U; — [0,1]}_, be
a partition of unity subordinate to the open cover {Ui}fzo, and set n; = gim.
Note that 79 = 0 and n = Zle 1;. Since 7; is an m-form supported in U,
it has an expression
n; = fidxy A Ndxy,

for some smooth function f; compactly supported in V;, and we define

L:/ fl(l’l,,fbm)dibldxm
Hr,

in the sense of multivariable calculus. Finally, we define

4

We need to show that the latter is independent of the choices made.
Suppose
C' = {(p;: UJ/- — Vj/ C Hpbi<j<k

is another such collection of charts, and let {¢}: U; — [0, 1]}?:0 be a
partition of unity subordinate to {U ]’ };?:0, where Ujy = Uy. Then the double-
indexed finite collections

C1 = {vij = @ilv,nvy: Ui NUj — Hinhi<ice, 1<j<k
and

Co = {yi; = Gjlu,nvr: Ui NUj — Hinhi<ice, 1<j<k
both cover K and refine C and C’, respectively. Furthermore,

{oij =0 5 UinU; — [0.1]}, oy ;o Y00 Uo — [0,1]},
where
200 = 00 + 0p — 200p;
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is a partition of unity subordinate to the cover
{Ui N Ujhi<i<e, 1<j<k U{Uo}-
For1<i</{,1<j<k,letI;; and Ilfj denote the integrals of n;; = 0;;n

with respect to the chart maps ¢;; and gogj, respectively.

We claim that
k
(20.1) D= > Iy= >, =) I
i=1 1<i<t, 1<j<k 1<i<e, 1<j<k j=1

where I denotes the integral of n; = o7 with respect to the chart map ¢/.

The first and last equalities follow from the additivity of integration over
H,,,, which gives
D ED W
1<j<k 1<i<t

It remains to show that I;; = I{j forall 1 <i</¢,1<j<k. BothlI;;and
I,fj are the integrals of the same m-form 7;; with respect to two (potentially
different) chart maps ¢;; and ¢;;. Suppose

nij = f(x)dzy A+ ANdxp,
in coordinates via ¢;; and

nij = g(x)dxy A - Adxy,
in coordinates via ;. If 1(z) = ¢;; o <pl._j1(:):) is the transition map, then
flz)dzi A -Ndxy, = Y™ (gdri A -Ndxy,) = det(dy) g(P(x)) dei A- - - Adxy,.

Since both charts are compatible with the orientation, we have det(dy) > 0.
It follows from the change of variables formula in multivariable calculus
that

I; = /H g(x)dxy - - dzy,
= / det(dy) g(¢(z)) dxy - - - dzyy,
:/ f(x)dxy - - dxy, = 1.
Hpm

0

Exercise 20.3. Find the integral f g2 w2 where wy is the standard volume
(area) form of S? as expressed in Exercise [17.10
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Next, we learn about Stokes’ Theorem that expresses a deep relationship
between differentiation and integration, generalizing the Fundamental The-
orem of Calculus (FTC) to higher dimensions and to integration over man-
ifolds. Just as FTC relates the integral of a derivative over an interval to
the values of a function at the boundary points, Stokes’ Theorem relates the
integral of an exact differential form over a manifold to the integral of the
differential form itself over the boundary of that manifold.

Theorem 20.4. (Stokes’ Theorem) Suppose M is a smooth oriented m-
manifold (possibly) with boundary OM and 7 is a compactly supported (m —

1)-form on M. Then
/dn=/ m,
M oM

where the induced orientation on OM is chosen such that, for an outward-
pointing vector field i along OM , the vector bundle isomorphism

TM|py =R -7 & TOM
is orientation preserving (see solution to Ezercise .

Many classical results in calculus are special cases of the general Stokes’
Theorem above. For instance, in addition to the Fundamental Theorem of
Calculus (FTC), we have the following:

e Green’s Theorem (in the plane):

P
Pd:L‘+Qdy:// <8Q—8> dz dy
OR R\ Oz Ay

This is a special case of Stokes’ Theorem in dimension 2, where §
denotes integration over OR with respect to the counterclockwise
orientation.

e Curl Theorem:

/ ﬁ-d?—//(Vxﬁ)-dg
oS S

This is the general theorem applied to a 2-dimensional surface S C
R3 with boundary. Under the dictionary of Theorem this
corresponds to Theorem applied to a 1-form.

e Divergence Theorem (Gauss’ Theorem):

///V(v-ﬁ)dv_//avﬁ-dﬁ

This corresponds to Stokes” Theorem on a 3-dimensional domain V'
with boundary surface V. Under the dictionary of Theorem [19.2
this corresponds to Theorem applied to a 2-form. More gen-
erally, for any m-manifold M with a volume form w and boundary
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OM, and with divergence defined as in (19.3), the Divergence
Theorem reads:

/Divw(X)w:/ LxW.
M oM

If w = wg is the volume form associated to a Riemannian metric, 7
is the orthonormal outward unit vector field along M, and wyys
is the volume form of M (with respect to the induced metric), we
can re-write the identity above as

/ Div,(X)w = X -1 wanr,
M oM

where X -7l = g(X,7) measures the flow of X across the boundary

of M.
e Cauchy Integral Formula (Complex Analysis):
1 f(z)
=— ¢ —>d
1(z0) 2 Jy 2 — 20 :

This follows from Stokes’ Theorem applied to the closed 1-form

w = %dz on a cylindrical domain in C, using the fact that holo-

morphic functions satisfy dw = 0.

Proof of Stokes’ Theorem. As we observed in the proof of Theorem [20.2]
any integral can be written as a finite (or countable) sum of integrals over
charts. Thus, it suffices to prove the result for a compactly supported dif-
ferential (m—1)-form

m
77:Zai(x)dazl/\‘--/\daﬁi/\---/\dacm
i=1

on H,, = Rzo x Rm—1,

We compute

d — - -1 i—laai(x) d d
n—Z( ) 9. 1 A AN dz,.
i=1 t

For ¢ > 1, integrating first with respect to the i-th variable we get

/ ({M(x)dxl/\---/\dxm:/ (/ 80@(1‘) dl‘i> dai1"'g$\z""d$m:07
H,, 6%1 Hpn—1 —0o0 8$1

since by the Fundamental Theorem of Calculus,
> 8a2-

—00 (9332
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For i = 1, integrating first with respect to x; and using the Fundamental
Theorem of Calculus gives:

/ (‘%ldxl/\/\d:[]m:/ </ 8a1(x17x2’.“7$m)dl’1>d:L'Q“'dem
" 8$1 Rm—1 0 8.%'1

:/ —a1(0, 22, ..., &) dxy - - - dTy,.
Rm—l

On the other hand, the outward unit normal vector field to H,, is —0,,.
Therefore, the coordinates (xg, ..., z,,) on 0H,, induce the opposite orien-
tation from the one inherited from M. We conclude that

—/ a1(0,x2,...,xm)d:ﬂ2---d$m:/ nloa-
m—1 oM
O

Exercise 20.5. Redo Exercise [20.3| using the presentation of wo Exam-
ple and Stokes’ Theorem.

Exercise 20.6. Suppose 7 : S — R? is a smooth embedding. Compute
the integral fsl ~v*0 when
0 = zy’dx + 2%ydy
Exercise 20.7. Show that the 1-form
xdy — ydx
2 +y?
on R?—{0} is closed but not exact. Calculate the integral [ 7 on the ellipse
C ={(z,y) e R?: 2% 4+ 2¢* = 1}.
Exercise 20.8. Let 1 be the 2-form on R3 — {0} defined by
_zdy Ndz+ydz Ndx + zdx N dy
- (332 + 42 —1—22)3/2
Let ¥ C R? — {0} be a smooth compact surface that is the boundary U
of a compact 3-manifold-with-boundary U C R3. Let’s agree to give the
“bounded domain” U the orientation it inherits from R?3, and then use this to

induce the corresponding “out-pointing” boundary orientation on ¥ = 9U.
Prove that

A n g 0 otherwise.

1 {1 if 0eU,
Exercise 20.9. In Exercise we showed that for a > b > 0, the surface
M ={(z,y,2) eR®| (r —a)® + 22 = b*}

is a diffeomorphic to a 2-torus. Here, 2 = 22 +y?. Find the area of M with
respect to the standard metric on R3.



Solutions to exercises 187

Solutions to exercises

Exercise We compute [¢, wy in two ways.

Remark 20.10. For any proper open subset U C S?, the restriction ws|ys
does not have compact support, but fU wo is still well-defined and can be
computed using any system of local coordinates. We have used differential
forms with compact support primarily to ensure the finiteness of integrals.
Nevertheless, since | g2 wo is finite, integrating wy over any chart yields a
finite value. Moreover, if the complement of U has measure zero, then

/ WQZ/CUQ.
52 U

Thus, in many cases, integrating over a single chart suffices to compute the
integral over the entire manifold.

First, we calculate the area of the upper hemisphere, which is half of the
total area. To do this, by Example [I7.10] we need to integrate

1
— dx1 N dxzo
Zo

over the upper hemisphere, which is the graph of

©: By — R3, (%1,1’2)'—)(xo_\/l—.%%—x%,xl,xg).

Therefore,

1 1 1
“area of §? = / —dx1 Ndze = / o~ ( dx1 A d$2> .
2 Image(p) L0 By Zo

Changing to polar coordinates (r,) on the disk of radius one B; C R?, the
integral becomes

1 o 1
1 r 1

rdrd9—27r/ 7dr:—27r\/1—r2‘ — or.
/r:0/9=0v1—7”2 0o V1—r2 0

Therefore, [g, wo = 4.
In the second approach, we cover all but one point of S? using a single chart
— namely, the stereographic projection map
(Vo U+ — RQ
from (2.3). Since Uy is dense in S%, we have
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We compute:
1

1 n ’ ‘2 (|$’2 — 1, 2.%'1, 21‘2) .

o (a1, 22) =

Using polar coordinates (r, #) on R? and cylindrical coordinates (z = g, R, )
on R3, this becomes

r?—1 2r
(r,0) — (2, R,0) = <r2+1’ 21 9) .

Therefore,

1
/ (1) wo :/ (e h)* <RdR/\ dﬁ)
R2 R2 z
r24+1 2r 2r
= . d A db
/Rzﬂ—l r2+1 (r2+1>
/ / N dr/\ do
r=0 J0=0 T

1 o0
—9 7d — dr|— | —4n
F/O 212 7T[r?Jrl]O T

Exercise In Example the form wo is the restriction of
zdy Ndz+ydz Ndx + zdz A\ dy
to S2. By Stokes’ Theorem,

/d(wdyAdz+ydz/\d:v+zdx/\dy):/ rdyNdz+ydzANdx+ zdx Ndy,
B 52

where B is the unit ball in R?® whose boundary is S2. Since
d(mdy/\dz—{—ydz/\d:n—{—zdx/\dy) =3dx ANdy Ndz,

we obtain
4
area of S2 :3/ dx ANdy A dz = 3 x volume of B :3-§7r:47r.
By

Here, the volume of the unit ball can easily be computed using spherical
coordinates in R3. O

Exercise [20.6. By Jordan Curve Theorem [Kur66], the image C' C R?
of ~ divides the plane into exactly two connected components: a bounded
interior R and an unbounded exterior, with C' as their common boundary.
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We have

9(zy?)
Ay
Therefore, by Stokes’ Theorem,

/“fwa/ez/dezu
St C R

Exercise 20.7. We have

0(z%y)
d = ——dy Ndx + 9 ——dx ANdy =2xydy Ndx + 2xydx Ady =0

dn—a(aga@daﬁ/\dy+a(g§iy2)dx/\dy

2 2 2
y - ==Y

= Y v ndy+ o

Y (22 +y?)?

(2% +y?)?
Writing 7 in polar coordinates gives a simpler proof of closedness and an
easier calculation of fC 1. Since

dx ANdy = 0.

we get o 20 o0
d9:d(tan 1(;)) a—dw—i—afdy

By the chain rule:
9 _d. (y) __ (_1) __Y
or  dx x _1+(£)2 x2) 224 y?’

@ d tam (g) B 1 1y _ =
oy dy x _1+(£)2 x) x4y
Therefore,
—y x rdy —ydx

df = d dy = ———""— =
22+ 42 x+x2+y2 Y 22+ o2 n

Let S! denote the circle of radius € centered at the origin. For e > 0 suffi-
ciently small, S! and C bound an annular region R. By Stokes’ Theorem,
and noting that the orientation of S! is opposite to that of C' (due to outward
normal vectors pointing in opposite directions), we have

0= for= Lo L

S‘l
/77:/ n:/ df = 2m,
c s1 51

which simply measures the total change in angle along C.

Therefore,
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Since the integral is nonzero, 7 is not exact (this can also be seen from the
fact that € is multivalued). If n were exact, Stokes’” Theorem would have
implied that [, 7 = 0. O

Exercise [20.8, The 2-form 7 is defined outside the origin and satisfies
(check for yourself)
dn = 0.

If U does not include the origin, the result follows from Stokes’ theorem.
If U includes the origin, then for € > 0 sufficiently small, U contains the
closure of the open ball

B. ={z e R3: |z]| < &}.

Let V. = U \ B:(0). Then OV consists of ¥ = U and the 2-sphere S2
of radius €. By Stokes’ theorem and the orientation convention (as in the

previous exercise), we have
for= Lo
s 52
Restricted to S2, we have
xdy ANdz+ydz Ndx + zdx N\ dy
3 .
€

nlsz =

Therefore,
/ 1’]:6_3/ xdy Ndz +ydz Ndx + zdx N\ dy.
52 52
By Stokes’ theorem again,

/ xdy/\dz+ydz/\d$+zdazAdy:/ d(zdy Ndz + ydz Ndx + zdzx A dy)
52

=(0)

= / 3dx A dy A dz = 3vol(B.(0)) = 4me.
=(0)

Putting everything together, we obtain
/ n=e3(4ne®) = 4m.
b

O

Exercise With respect to the cylindrical coordinates (7,9, z) on R3,
we have the identification S' x S — M given by

h: ST x ST = R3 (0,0) — (a+beos(p), 0, bsin(y)),

where 6 and ¢ are the angular variables on S' C C.
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The manifold M can also be seen as a (regular) level set of the function
f:R3 SR, (r9,2)— (r—a)®+ 2%

With respect to the Euclidean coordinates (x,y, z) and the standard metric
on R3, the gradient vector field of f is

r—a)x 0 r—a)y 0 0
Vf_Q{(qﬂ)(%c+(7")&y+z&z«}
To find the area form of M, we need the normal vector field
v
V£l
along M. We have
IVl =2y (r—a)?+ 22 =2b.

Therefore,

TR0 e v oy Cos

and the area form w of M is

w = tp(dx Ady N dz).

1{(r—a)x d (r—a)y d 0}7

It is easier to write everything in cylindrical coordinates. In (7,1, z) coordi-
nates,
de NdyANdz =rdr Nd9 Ndz

and

Therefore,
w= 7drAdﬁ+WdﬁAdz.
We conclude that

area(M):/ w:/ h*w
M S1xS1

2 27
= /0:0 :0(a + bceos(p)) (bsinQ(cp) + bCOS2(<p)) do A de

2 2m
= / / b(a + bcos(p)) dbd A dp
=0 J =0

2m
= 27r/ b(a + bceos(p)) dp
©=0

= (2m)2ab.






Chapter 21

Poincaré Lemma and
Thom isomorphism

Manifolds are constructed by gluing local pieces that resemble open subsets
of R™. Therefore, to understand the de Rham cohomology groups of ar-
bitrary manifolds, it suffices to first understand the cohomology groups of
these local pieces.

Theorem 21.1 (Poincaré Lemma). For m > 0 we have H'(R™) = R and
all other cohomology groups vanish.

For instance, the Poincaré Lemma implies that every closed 1-form on R™
is exact. Starting with

m
n= Zai(az) dx;,
i=1
and assuming dn = 0, the following construction defines a smooth function
f: R™ — R such that df =n.
It is easy to verify that
8@1' . Gaj

21.1 = =
( ) d77 0 (%cj 8$Z

V1<i,j<m.

For each t € [0, 1], consider the smooth map
(21.2) pr: R = R™, o~ ta.

Clearly, ¢in = n and ¢in = 0. Therefore, by the Fundamental Theorem of
Calculus,

Ly
=gin—gin= | —¢indt.
1= 1N — y1 /Oatsom

193
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By the definition of the pullback, we have

m

in = Z a;(tz) d(tz;) = fz a;(tx) dx;.

i=1 i=1
Thus,

875%77 Zaz (tx al:cz—i-tz:aaZ

Applying the chain rule and then using (21.1)), the second term becomes

’ Z 8(11 ¢ zm: i 2;: (tz) z; dz;

Therefore,

at%?? Zal t.%' dxz+zxzdaz tl’ —d<zxzaz t-T).

Let

fr: R™ = R, fi(x) = Zmz a;(tx).

1
77:/ dft dt.
0

Since d is taken with respect to the z-variables and the integral is with
respect to the parameter ¢, the two operations commute. Hence,

n:d/olftdt.
—/Olft(x)dt

Then,

Therefore, n = df, where
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Remark 21.2. This proof does not extend to compactly supported 1-forms,
because the support of f;, and hence of f, is the preimage under ¢; of the
support of 1, which grows as t — 0.

Exercise 21.3. The following is a well-known result that allows us to inte-
grate smooth differential forms over continuous maps into manifolds.

Theorem 21.4 (Approximation of Continuous Maps by Smooth Maps
[Hir76, Theorem 2.7]). Let X be a compact C*° manifold (with or with-
out boundary), and let Y be a smooth manifold. Then every continuous map
f: X = Y is homotopic to a smooth map, and given any open cover U of
Y, f can be approzimated by a smooth map g such that f(x) and g(z) lie in
the same element of U for all x € X.

Keeping this in mind, suppose M is a simply-connected smooth manifold
and 7 is a closed 1-form on M. Fix a base point pg € M. For any other
point p € M, let v: I — M be any smooth path from pg to p. Here, I is
closed interval in R. Show that

f: M =R, f(p)ZAnzz/Iv*n

is well-defined (i.e., it does not depend on the choice of 7). Prove that
af =n.

There are different ways to prove the Poincaré Lemma. Here, we follow an
approach that relies on important and broadly applicable techniques from
homological algebra.

Suppose f: M — M’ is a smooth map between two manifolds. Since the
exterior derivative d commutes with pullback by f, the map f induces a
linear map

froHN M) - HY(M) Yk >0.

However, the same is not true for compactly supported cohomology groups,
since the pullback of a compactly supported k-form may fail to be compactly
supported. This issue is resolved if we assume that f is proper, meaning that
the preimage of every compact set is compact.

Definition 21.5. Two smooth maps fy, fi: M — M’ are called smoothly
homotopic if there exists a smooth map

F:[0,1] x M — M’
such that
Flioyxam = fo and  Flgyun = fi-
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Example 21.6. The identity map id: R"™ — R™ and the constant map
0: R™ — R™ are smoothly homotopic. One such smooth homotopy is given
by
F:[0,1] xR™ = R™, (t,x) — tz,
that we used in (21.2)).
Theorem 21.7. If fy, f1: M — M’ are smoothly homotopic, then
fo = f HY(M') — HN(M).

Corollary 21.8 (Poincaré Lemma). For m > 0 we have H*(R™) = R while
all other cohomology groups vanish.

Proof. Apply Theorem to f1, fo: R™ — R™, where f1(z) = x and
fo(x) =0. O

To prove Theorem [21.9] we establish a stronger result at the level of differ-
ential forms. More generally, consider two cochain complexes:

(A% d) = — Ajg -5 Ay -5 Ay — -
and

(B.,d) = —> Bp_4 i>Bk i}BkJrl —r
A map of cochain complexes f: (A®,d) — (B®,d) is a sequence of maps
fr: A — By such that the following diagram commutes for all k:

d d d
e Ay e Ay Ay e

lfk_l lfk lfk-u
d d

d

= By s By By

A map of cochain complexes induces maps on cohomology groups. Two such
maps

frg: (A% d) — (B®,d)
are called chain homotopic if there exists a sequence I = {I}} of degree
decreasing maps I : Ap — Bp_1 such that

fk—gr=dol+ Ijy10d.

This is typically illustrated by the following (non-commutative) diagram:

d d d
= Ag Ak Ag+1 o
I, T4
fe—1—9k—1 fe—9k Tet1—9k+1
d d d

o+ ——= B4 By, Biy1
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It is a general fact that chain homotopic maps induce the same maps on
cohomology; c.f. [Wei94, Lemma 1.3.2]. The proof is relatively easy and
involves some diagram chasing.

In the setting of smooth maps between manifolds, the following theorem
shows that if fo, fi: M — M’ are smoothly homotopic, then the induced
pullback maps on differential forms are chain homotopic. Consequently,
Theorem 21.9] follows.

Theorem 21.9.
(1) For k > 1, there exists a linear map
hy: QF([0,1] x M) — Q1 (M)
such that
i = 3o = d o hy + hyi1 0d,
where jo,j1: M — [0,1] x M are the inclusion maps of the bound-
ary:
jo(x) = (0,2) and ji(z)=(1,2).
(I1) If fo, f1: M — M’ are smoothly homotopic, then the pullback maps
fi 75 (M), d) = (9°(M), d)

are chain homotopic. Therefore, they induce the same map between
cohomology groups of M' and M.

Proof. For k > 1, every differential k-form on [0,1] x M can be uniquely
decomposed as

dt N a+ 0,
where 15,5 = 0, and in any product chart [0,1] x U, with local coordinates

(z1,...,omy) on U, the forms o and f only involve the differentials dz;
(although their coefficients may depend on both z and ).

Define
1
hi(dt A ac+ B) —/ adt € QFH(M).
0

In other words, the operator hj integrates the coefficient functions of a with
respect to t, yielding functions that only depend on x.

To verify that this operator has the desired properties, it suffices to work in
a local chart on M.

In a chart with coordinates (z1,...,Zy), the form a is a sum of terms of
the form

a(t,x) dxy, A--- Ndxg,,_,



198 21. Poincaré Lemma and Thom isomorphism

and S is a sum of terms of the form
b(t,z) dxj, A--- ANdxj,.
Taking one of these terms at a time for simplicity of notation, we compute:

(1)
(f = )t A+ B) = (b(1,2) — b(0,2)) daj, A~ Ada,

(2)
(doh)(dt Ao+ B) = dy <</01 alt, z) dt> dai A A dxik1>

1
= (/ dza(t, x) dt> dxiy N Ndzg,, |
0

! daft
_Z< Céxx dt) daig A+ Aday,
20

0
(3)
op
(Art1 0 d)(dt At B) = by | —dt Adpr +dEA 20 +dof3
(t,

:hk+1< dt/\zaa z) - Ndxg,

ob(t
+ dt A <’x)d:cj1A---/\dxjk)
L dal(t, x)

+ </ %(;;x) dt> daj, A - Adaj,
0

da(t,x)
=—Z<O “oer dt) dwig A+ Adag,

+ (b(1,2) = b(0,z)) dxj, A~ Aday,
It is clear from the calculations above that

(G =GNt A+ B) = (d o hy + hypq o d) (dE A a+ B).

This finishes the proof of part I.

For part II, we have fy = F o jp and f; = F o j;. Therefore,
o =JooF* and f{=jjoF™.
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By part I and since pullback commutes with d, we have
fl—Jfo=01—do)oF" =(dohy+hpp1od)o F* =do I+ Irirod,
where
I, = hy o F*: QF(M) — QF1(M).
O

For compactly-supported cohomology, we obtain a result that is formally
opposite to Theorem This is no coincidence. As we explain later, on
any smooth oriented m-manifold M without boundary, the bilinear pairing

QF(M,R) x Q™ *(M,R) — R
defined by integration of the wedge product of forms,

(@8) [ ans.

induces a natural isomorphism between H7~*(M,R) and the dual of H¥(M, R).
In particular, H*(M,R) and H?~*(M,R) are finite-dimensional real vector
spaces of the same dimension (This is one version of Poincaré duality).

Theorem 21.10 (Thom Isomorphism). For every smooth manifold M, we
have an isomorphism

HMY M x R,R) = H*(M,R).

Consequently, for every m > 0, we have H"(R™ R) = R, and all other
compactly-supported cohomology groups of R™ wvanish.

Proof. For any smooth manifold M, we construct a linear map
(21.3) I QM YR x M) — QF(M)

with the following properties:

(1) It sends closed forms to closed forms.

(2) It sends exact forms to exact forms.

(3) It is surjective; in fact, there exists a map J: Q¥(M) — QIR x M)
such that I o J = id.

(4) If n € Q¥ (R x M) is closed and I(n) is exact, then 7 is exact.

It is easy to see that such an operator I induces an isomorphism
HMY(R x M,R) — HF(M,R).
Just as in the proof of the Poincaré Lemma, we decompose

n=dtNa+pf,
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and define

I(n) = / adt.

R
The support of I(n) is the projection to M of the compact support of 7.
Since
dn = dt A (-deé + 86) +d.3,
ot
we conclude that 7 is closed if and only if
0
dya = a—f and d.8 =0,

where d, denotes the exterior derivative with respect to the M-coordinates
in a product chart.

To check (1): If n is closed, then
R R ot

R

To check (2): If

0b
n=dy=dtA (—dza—i-at) + d;b

for some v = dt Aa+b € QF(R x M), then

I(n):/adt:/ <—dma—|—ab> dt:—dm/adt,
R R ot R

which is clearly exact.

To construct a right inverse J, choose any compactly supported function
h(t) on R with total integral [, h(t)dt = 1, and define

J: QM) — QFFYR x M),  a—dt A (h(t)a).

It is easy to check that I o J =id.

Finally, to verify (4), suppose 1 = dt A a + B € QFH1(R x M) is closed and
I(n) is exact. Then J(I(n)) is also exact, and I(n — J(I(n))) = 0. So by
replacing n with n — J(I(n)), we may assume (1) = 0. In this case, define

bt, ) = /t a(s, z) ds.

It is easy to check that b € QF(R x M) satisfies dy = .

This completes the proof of the first statement in Theorem [21.10, The
second statement then follows by induction on m, using the first statement.
The base case m = 1 was addressed in Exercise [[8.9] O
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Both the Poincaré Lemma and Thom Isomorphism hold in more general
settings. Suppose m: ' — M is a smooth vector bundle of rank r. Then,

(21.4) H*(E,R) = H*(M,R).

Furthermore, if E is oriented, integration along the fibers of E defines an
isomorphism

(21.5) HFE,R) — H*7"(M,R).

These generalizations are particularly useful for relating singular homology
(which we do not study in this book) and de Rham cohomology.

Exercise 21.11. Use Theorem to prove (21.4]). Then, by considering
local trivializations of F and verifying that the isomorphism constructed
in the proof of Theorem [21.10] is compatible with the transition maps,

prove (215).

Exercise 21.12. For m > 1, suppose M is a compact, connected, orientable
m-dimensional submanifold of R™*!. In Exercise we showed that the
normal bundle of M is trivial. Use this, together with the fact (which
we do not prove in this book) that a neighborhood of any submanifold is
diffeomorphic to a neighborhood of the zero section in its normal bundle, to
prove that R™*1\ M has exactly two connected components.
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Solutions to exercises

Exercise First, we show that f7 n does not depend on the choice of
path . Suppose v, and 72 are two smooth paths from the fixed base point
po to a point p € M. Then the concatenation of v; with the reverse of v
(e.g., 72(1 —t) when t € I = [0, 1]) defines a continuous loop

v: St — M.
Since M is simply connected, the map v extends to a continuous map

5: D? = M,

where D? is the 2-dimensional disk bounding S'. By Theorem for any
€ > 0, the map 7 can be approximated by smooth maps 7.: D? — M that
are e-close to 7 in the uniform C%-norm. Since 7 is closed, and by Stokes’

Theorem,
0=/ ?Sdn:/ VN,
D2 St

where 7, is the restriction of 7, to S'. Letting ¢ — 0 and using continuity
of integration, we conclude that

02/7*77:/77—/77.
St 7 V2

To show that df = n at a point p € M, note that the derivative is a local
property, so we may work in a coordinate chart around p. Let (z1,..., %)
be local coordinates on a neighborhood U of p, identifying p with the origin
0 € U C R™. Then

0 he;) — f(0

81‘1' h—0 h ’

where e; is the standard unit vector in the i-th direction. Fix a path ~ from
po to p. Concatenating it with the straight-line path

Yh [O, 1] — U, t — the;,
gives a path from pg to the point corresponding to he;. Therefore,

f(he;) = f(0) 1/1 .
I YR
0

h h
Suppose

n= Z aj(z) dz;.
j=1

Then
vin = ai(t he;) hdt,
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and so )
E’yin = a;(the;)dt.

Therefore,
hei) = £(0) (!
f(e)hf():/o ai(the;)dt,

and taking the limit as h — 0 gives
he;) — !
lim £ = 10) _ / 0:(0) dt = a;(0).
h—0 h 0
We conclude that
of

dflo = i 87@(0) dz; = no-

Exercise [21.11} The map
F:[0,1]xE— E, (t,v)—tv

is a smooth homotopy interpolating between the identity map on E and the
projection map w: E — M. Note that w is viewed as a map from F to
itself, with image equal to M. From this perspective, the map

7 H*(E,R) — H*(E,R)

acts by first restricting a cohomology class to M and then pulling it back to
E. By Theorem 7* is the identity map on H*(E,R). Therefore, every
cohomology class on F is equal to the pullback of its restriction to M, and
we conclude that

H*(E,R) = H*(M,R).
Consider a collection of local trivializations

{(I)i: E|Ui — U; X Rr}
over a countable open cover {U;} of M, compatible with the orientation on
E.
For each i, let

Ii: QM (U x R™) — QNU;)

be the map obtained by repeatedly applying (21.3) r times, eliminating one

copy of R at a time. More precisely, any 7 € Q7 (U; x R") can be written
as

n=dty AN---Ndt, Na+ 3,

where (t1,...,t,) are coordinates on R", and /3 consists of terms that do not
include dt1 A --- A dt,. Then,

Li(n) = / adty - dty.
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The support of I;(n) is the projection to U; of the compact support of 7.

Using a partition of unity subordinate to the open cover {U;}, every n €
QF+7(E) can be decomposed as a countable sum Y, n;, where each ; is sup-
ported in E|y,. Under the identifications of Q¥+7(U; x R") and Q¥ (E|y.)
given by ®;, we define

I(n) = Zfi(m)-

To prove that I is well-defined — i.e., independent of the choice of local
trivializations and partition of unity — we must show that different local
trivializations

®: Ely — UxR" and ®y: Ely — U xR"
result in the same maps
I, Ir: QM7 (U x R — QD).
In other words, the change-of-trivialization map (which is a diffeomorphism)
U:UxR — U xR",
(x,t = (t1,...,tr)) = (2,8 = (51,...,8)) = (, P1yo(x)t)

satisfies
Ir(n) = L(¥*n) Ve QMU xR,
If
n=dsy A---Nds, N a(z,s)+ B(z,s),
then

\If*’l’] = det(q)ng(:U)) dty A -+ Adt, N Oé(:E, @L_)Q(fx)t) + ﬂ,(l‘, t),

where ['(z,t) collects all terms that do not include déy A -+ A dt,, and
a(x, ®1,9(x)t) denotes the k-form whose coefficients are the coefficients of
« written as functions of (z,t) under the change of variables.

Therefore,
Iy(n) = / ag(x,s) dsy - --dsy

and
Il(\I/*n) = / det(@ng(x)) 042(.’13, (I)l,_)g(l‘)t) dtl s dtr.

Since the local trivializations are compatible with the orientation we have
det(®12(x)) > 0. For each fixed =, the map t — ®19(x)t is a linear
transformation with Jacobian determinant det(®;2(x)). It follows from
the change of variables formula in multivariable calculus that the two
integrals are equal. O
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Exercise As explained in the question, a neighborhood U of M
in R™*1 can be identified (via a diffeomorphism) with V = M x (—1,1),
identifying M with M x {0}. Clearly, V'\ M has two connected components,
distinguished by the sign of the variable in R*.

First, we show that R™*1\ M has at least two connected components. Fix
p € M, choose 0 < ¢ < 1, and let pr = (p,+e) € V. We denote the
corresponding points in U by the same letters. Suppose pi belong to the
same connected component of R™*1\ M. Fix a smooth path vy connecting
them. Attaching to ~ the straight path from p_ to p4 in V| which intersects
M transversely at (p,0), we obtain a loop

5: 81 — rm AL
that intersects M transversely once at p € M.

Suppose h(t) is a smooth function compactly supported in (—¢, &) with non-
zero integral
€
/ h(t)dt = ¢ £ 0.
—&
Under the identification of U and V', the compactly supported closed 1-form
n = h(t)dt on V defines a compactly supported closed 1-form 1 on R™*1.

It is clear that
/17 = *c.
ol

On the other hand, by the Thom isomorphism or Poincaré lemma, 7 is exact;
i.e., n = df for some smooth function f. Therefore, by Stokes’ theorem,

én=£1d<fo%>=o.

This is a contradiction. We conclude that the images Uy of M x (0,1) and
M x (—1,0) in U belong to two different connected components of R™+1\ M.
Since R™*! is connected, every point in R™*!\ M can be connected to a
point in Uy without intersecting M. We conclude that R™+1\ M has exactly

two connected components. Since M is compact, one of these components
is unbounded, and the other must be bounded by M. ([






Chapter 22

Mayer-Vietoris
sequence

As we have emphasized repeatedly, manifolds are constructed by gluing to-
gether local pieces that resemble open subsets of R™. The Poincaré Lemma
and the Thom isomorphism illustrate that the cohomology of these local
pieces is relatively simple. To deduce information about the de Rham co-
homology of a general manifold from that of its local pieces, we need an
inductive tool. The Mayer-Vietoris sequence provides precisely such a mech-
anism, arising naturally from basic principles of homological algebra.

Suppose M = Uy UU, is a decomposition of the smooth m-manifold M into
two open subsets. For every k£ > 0 and i = 1,2, let

Ri: Q¥ (M) — QF(U;) and 7 QF(U;) — Q¥ (UL N T)

denote the restriction maps. Putting them together appropriately gives us
a sequence

0 — QF (M) =R k(1)) & QF (1) 222212 OF(Uy N TL) — 0.

It is easy to verify that this is a short exact sequence; that is, R is injective,
r is surjective, and ker(r) = Im(R). Surjectivity of r can be proved using a
partition of unity subordinate to the covering.

207
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Running over all £ > 0, the maps R and r define a short exact sequence of
cochain complexes, i.e., a short exact sequence (in vertical direction)

s QL) QF (M) Qk+1(M)d_>...

| A |

"4>Qk*1(U1I_IU2)d4>Qk(U1UU2)4d>Qk+1(U1I_IU2)d—>--~

I lr A

= QU N Up) —= QF (U N Up) — = QR (U N 1) S -

d d

between the de Rham cochain complexes of M, Uy UUsy, and U1 NUs. It is a
basic theorem in homological algebra that a short exact sequence of cochain
complexes results in a long exact sequence of cohomology groups; see [Wei94),
Theorem 1.3.1]. In our case, this short exact sequence yields the long exact
sequence of cohomology groups:

0—— HY(M,R) —2~ HO(U;,R) & HO(Us, R) — HO(UlﬂUg,]R))

5.
0

4]1(M, R) —— HY(U1,R) & H'(Us, R)

. - :

/HW(M, R) —> H™(Uy,R) ® H™(Uy, R) —> H™(Uy N Uz, R) — 0

Hl(Ul ﬁUQ,R))

The maps in each row are induced by the maps R and r. We now describe
explicitly the so-called connecting homomorphisms

§: H*(U; N Uy, R) — HF(M,R)

in our setting. This long exact sequence is known as the Mayer-Vietoris
sequence.

Any cohomology class [] € H*(U; NUs, R) is represented by a closed k-form
n e QF(U; N Uy, R).
Suppose {o;: U; — [0,1]} is a partition of unity subordinate to the open
cover {Uy,Us}. Then the k-forms
m=g2m and m2=—017

on Uy NU; can be trivially (i.e., by zero) extended to well-defined k-forms
on Uy and Us such that r(n1,n2) = n. Let ; = dn;. Since dp1 + dga = 0, we
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have

Mmloinw, = mlvinv,:
Therefore, 71 and 72 define a (k + 1)-form 77 on M. Moreover, this form is
closed since each 7; is exact. Hence, it defines a cohomology class [7], which
we define to be §([n]). It takes a lengthy but straightforward calculation to
check that this result is independent of the choices involved. More precisely,
to show that ¢§ is well-defined, one must verify the following:

(1) If n is replaced by a cohomologous form (i.e., changed by an exact form),
then 77 also changes by an exact form.

(2) If the partition of unity is changed, the resulting form 77 again changes
by an exact form.

The reader is encouraged to verify these properties as an instructive exercise.

Example 22.1. The domain of the 2-chart atlas (2.3) gives a decomposition
52 = Ui U Us, where U; = R? and UinNnU; = R2 \ {0} ~ 6l ¥ R. By the
Poincaré Lemma (see Exercise [21.11]),

H*(U, N Uy, R) = HY(S', R).
Therefore, the Mayer—Vietoris sequence takes the form

R

0 R RoR-- =R

[Hl(Sz,R) 060 ]R>
[H?(S?,R) 060 0

It is straightforward to verify that the first row is exact; that is, the map
H°(U,R) ® H°(Uy,R) — H°(U; N U, R)

is surjective. Therefore, H!(S? R) = 0 and H?(S? R) = H'(S*,R) = R is
one-dimensional.

The second cohomology class in H?(S5?, R) corresponding to [df] € H'(S!,R)
under the connecting homomorphism (which is an isomorphism in this case)
can be explicitly described as follows.

Starting from n = df € Q'(R? \ {0}), we construct n; and 12 on U; and
Uy by multiplying df with suitable functions. Writing down explicit bump
functions with compact support is difficult because such functions are not
analytic. However, all we really need are functions fi, fo such that n; = fon,
ne = —fin, and f1 + fo = 1, with f; vanishing at the origin of U;.
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The chart maps in (2.9) equip U; with polar coordinates (r;,6;) such that

riro = 1 and 67 + 02 = 0. In complex coordinates, this corresponds to
21 = r1et and 29 = 7‘26"92, related by 29 = %

Let us choose the angular coordinate 8 on Uy N Us to be #1. The functions

2 2
1 T3
= d =
fa(ry) 1 r% and  fi(r2) 1 r%

satisfy the required properties. We obtain
2 2

1 )
mETy 2 e =T 22
The resulting 2-forms
- 2rq - 2r9
=dm =——>55dri Adf d =dny = ———=dro AN df
m m L+ )2 T 1 and 72 Uy L+ )2 ) 2

are compatible on the overlap and glue together to define a global 2-form 7
on S2. This form represents a generator [7] of H2(S% R).

One can check that 7 is, in fact, the standard area form on S2.

The restriction of a compactly supported differential form to an open subset
is not necessarily compactly supported. The inclusion map, however, is well-
defined. Therefore, corresponding to an open decomposition M = Uy U U,
we get short exact sequences of compactly supported differential forms

0 — QXU N U2) =292 k(1) @ QX (Us) 2222722 k(M) — 0.
in reverse direction. Here, for i = 1,2,

are the inclusion maps.

Running over all & > 0, the maps ¢ and j define a short exact sequence of
cochain complexes

e —— Q’gil(Ul N Ug) d4> Q?(Ul N UQ) 4d> Q]§+1(U1 N Uz)d4> e

; ] ;

..HQ]g—l(UluUQ)L.Q]Cf(UlUU2)$Q§+1(U1I_|U2)L>'“

b

s QR QF (M) Q’C“H(M)L-“
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Consequently, we obtain the long exact sequence of compactly supported
cohomology groups:

0 —— HO(U; N Uz, R) - HO(U1,R) & HO(Us, R)

H?(M,R) )

;Hcl(UlﬂU2,R)*>Hc1(U1,R)@Hc1(U2,R) H&(M,R))
D,

; H™U; N Uy, R) —= H™(Uy,R) & H™(Uy, R) —= H™(M,R) — 0

Exercise 22.2. Since S2 is closed, H*(S%,R) = H¥(S? R). Altering Exam-
ple[22.1] use the compactly supported version of the Mayer-Vietoris sequence
to calculate the cohomology groups of S2.
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Solutions to exercises

Exercise By the Thom isomorphism,

0 ifk=01,
HﬂM):{R if k=2

and
0 ifk=0,

HE(UL N Uy) 2 HY(SY) =
(LNt =HS) =3 itk =12

Therefore, the compactly supported Mayer—Vietoris sequence for S = R?U

R2 reads

) P R HO(Sz,R)>

0 0

2]

/ R 000 Hl(S2,R)>
/ R ROR H?(S%,R) =0

Thus, H(S?,R) = R, and the remaining part of the sequence is

>,

0 — HY(S%R) & HA(UWNUs, R) — HA(Uy, R)BH2(Us, R) — H2(S%,R) — 0.

The map

H*(U, NUy,R) — H?(Uy,R)
is injective; therefore, H'(S? R) = 0. To see this, it can be observed from
the proof of the Thom isomorphism that a generator of H2(U; NUs, R) = R
is of the form

h(r)dr A de,

where (r,0) are polar coordinates on U; N Uy = R?\ {0}, and h(r) is a
function supported near the unit circle r = 1, satisfying fooo h(r)dr # 0. By
Stokes’ theorem, since

/ h(r)dr A df # 0,
R2

this form defines a nontrivial class in H2(R?,R) as well.
Having shown that H'(S? R) = 0, we conclude that the remainder of the
sequence is a short exact sequence

0 — H2(U1 N Uy, R) — HZ(U1,R) ® HZ (U2, R) — H*(5* R) — 0,

which shows that H?(S?,R) = R. We will study top-degree cohomology in
more detail in the next section. (|



Chapter 23

Cohomology in top
degree

Cohomology in degree zero of any connected manifold M is simply H(M, R)
R. In this lecture, we will see that the top-degree cohomology of manifolds
is also simple and often identifiable with R via integration.

Theorem 23.1. Suppose M is a smooth oriented connected m-manifold
without boundary. Then HI"(M,R) = R. Moreover, integration of com-
pactly supported m-forms descends to the desired isomorphism, and for any
open subset U C M, every class in H"(M,R) has a representative supported
inU.

Proof. Suppose M is oriented. By Stokes’ Theorem, the integration map
/ O (M) — R
M

vanishes on exact forms (note that every m-form is automatically closed).
Hence, [ s descends to a well-defined linear map

/ . H™(M,R) — R.
M

This map is surjective because any positive function times a volume form
yields a non-zero integral. We aim to show that it is an isomorphism.

Let {U,} be a countable open cover of M by sets homeomorphic to open
balls in R™. Given w € Q7*(M), a partition of unity lets us write w = ) | wa,

213
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where each w, is compactly supported in U,. Define

Ca ::/ Wa-
M

Now fix any open subset U C M homeomorphic to an open ball in R™, and
choose @ € Q*(U) such that [,,@ = 1. This can be done by taking an
appropriate multiple of a volume form. We claim that

[Wa] = calw] € H'(M,R).
It follows that

wl = (D ca) @)

(07

ie., H™(M,R) is generated by a single element.

To verify this claim, fix a finite chain of overlapping open sets Wy, W1, ..., Wy,
each homeomorphic to an open ball in R, such that Wy = U and W,, = U,,.
For each 1 < i < n, choose an open set W/ C W;NW,_1, also homeomorphic
to an open ball in R™, and pick &; € Q7*(W]) such that [, &; = 1. By the
Thom isomorphism,

H™(W;) = H™(W/) R,

generated by any m-form with non-zero integral. Moving inductively from
Wi_1 to W/, and from W/ to W, we conclude:

e Initially, w — Wi = dfy for some compactly supported function fy
on Wy = U,

e Then, for each i = 1,...,n — 1, we have w;11 — w; = df; for some
compactly supported function f; on W;;

e Finally, cw,, — w, = df, for some compactly supported function f,
on W,, = U,.

Adding these relations yields
W — W = df,

for some compactly supported function f = f, + CZ;L;OI fion M. ([l

Remark 23.2. For any connected smooth manifold M, there exists a two-
sheeted covering space M — M whose total space M is oriented, and such
that the deck transformation acts by reversing orientation. This oriented
double cover exists whether or not M is orientable, and it is connected if
and only if M is non-orientable.

If M is a smooth connected m-manifold without boundary which is not ori-
entable, the connected orientable two-sheeted cover M can be used to show
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that H™(M,R) = 0, because the Zy-action on H™(M,R) is by multiplica-
tion by —1. Therefore, there are no Zs-invariant elements in Q*(M) with
nonzero integral.

Exercise 23.3. Suppose f: M — M’ is a smooth map between two m-
dimensional closed (i.e., compact and without boundary) oriented manifolds
and M’ is connected. The degree of f is the number

_ Ju

Jarw
where w is any m-form on M’ such that 0 # [w] € H™(M') such as the
volume form of M’.

deg(f)

e Prove that deg(f) is independent of the choice of w.

e Sard’s Theorem [Hir76, Ch. 3] shows that a generic point in M’
is a regular value of f. Use this to show that deg(f) is an integer
that counts the number of preimages of a regular value, with signs.

Exercise 23.4. Show that every degree d polynomial p(z) = z%+ag_12% 1+
...+ ag defines a holomorphic map p: CP! = 52 — CP! of degree d.

Exercise 23.5. Consider two disjoint embeddings of the circle S! into R3:
V1,72 Sl — Rg,
with image curves denoted by C7 and Cs. Define

71(p1) — 12(p2)

[71(p1) — 72(p2)|

The linking number ¢(C1, C5) of C; and Cj is defined to be the degree of
the map f, where each S is oriented counterclockwise, and S x S! is given
the product orientation. Prove that:

f: St x st — 52 (p1,p2) —

e ((Cy,(Cy) is symmetric in its inputs.
e If C; bounds an embedded oriented surface ¥ transverse to Co,

then £(C7, C2) equals the signed count of the intersection points of
D and CQ.

Theorem [23.1] can be used to prove an interesting duality between ordi-
nary and compactly supported cohomology groups, extending the duality
observed by comparing the Poincaré Lemma and the Thom isomorphism on
R™.

Lemma 23.6. On any smooth oriented m-manifold M without boundary,
the bilinear map

QF(M,R) x Q™" *(M,R) — R
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defined by integration of the wedge product of forms,

(@) (a.8) = [ anp.
M
descends to a bilinear map

(23.1) (=, =) : HY(M) x H" (M) — R.

Proof. This is a consequence of Stokes’s Theorem and the assumption that
oM = 0. O

Definition 23.7. An open cover {U,} of an m-manifold M (without bound-
ary) is called a good cover if every nonempty finite intersection Uy, N---N
Ua, is diffeomorphic to R™. A manifold that admits a finite good cover is
said to be of finite type.

Every smooth manifold admits a good cover, for example by sufficiently
small balls with respect to a Riemannian metric. Every closed manifold is of
finite type. Being of finite type implies, for instance, that the (co)homology
groups of M are finite-dimensional. One typically restricts to manifolds of
finite type to avoid pathological examples such as the infinite-genus surface
in Figure [I]

Figure 1. An open surface of infinite genus

Theorem 23.8. Suppose M is an oriented smooth m-manifold of finite type
(without boundary). Then, the pairing (23.1)) is non-degenerate; that is,

e ([a],—) =0=[a] =0 € H¥(M,R);
i <_’ [/BD =0= [/8] =0¢€ Hcmik(MJR)'
Consequently,

(23.2) H*(M,R) = H™ *(M,R)* VY k.

Since every real vector space is (non-canonically) isomorphic to its dual, we
conclude that the cohomology group in degree k£ has the same dimension
as the compactly supported cohomology group in degree m — k. For closed
manifolds, this reads

dim H*(M,R) = dim H™ (M, R).
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The isomorphism (23.2)) is known as Poincaré duality. Its proof below
uses the Poincaré Lemma, the Thom isomorphism, and an inductive argu-
ment based on the Mayer—Vietoris sequence and some homological algebra.

Proof of Theorem [23.8., For M = R™, the statement follows directly
from the Poincaré Lemma and the Thom isomorphism.

Next, suppose M = U;UU,, and assume that the statement of Theorem [23.8
holds for Uy, Us, and their intersection Uio = U1 NUs. We aim to show that
it then holds for M as well.

For each k, consider the following commutative diagram:

H (U1, R) & H* (U, R) H (U1, R) H5(M,R) H*(U1,R) & H*(Us, R) H*(U1,R)

l i l | |

H(','77k+](U1,R)* @ H;n—kﬁ»l((/%R)* H;n—k'ﬁ»](Uu‘R)* H(',77'7k(ﬂ[‘ R)* H(r‘u—ka;l.R)* ) H‘In—h([/‘VLR)* H(’,nik(l/r12AR)*

Here, the top row is the Mayer—Vietoris sequence for the standard de Rham
cohomology, and the bottom row is the dual of the Mayer—Vietoris sequence
for compactly supported de Rham cohomology. The vertical maps are the
Poincaré duality isomorphisms from for the respective open sets.

By assumption, the outer four vertical maps are isomorphisms. By the Five
Lemma (cf. [Wei94], Lemma 1.3.4]), stated below, the middle vertical map
is also an isomorphism.

Lemma 23.9. Let

b d

A—2~B C—S=~D E
lﬁ ifz lf:a lfzx ifs
Ao Yoo Y

be a commutative diagram in an abelian category (e.g., abelian groups or
vector spaces over a field), with both rows exact. If fi is an epimorphism,
fo and fy are isomorphisms, and f5 is a monomorphism, then fs is also an
isomorphism.

Now suppose M is a smooth, oriented manifold of finite type. Then there
exists an open cover

N
M=|]U,
a=1

such that every nonempty finite intersection Uy, N---NU,, is diffeomorphic
to R™. We prove Theorem by induction on N.
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The base case N = 1 is covered by the case M = R™. For the inductive
step, let

N N
W, = Uy, Wo=|JUs WinWe=|JUan).
a=2 a=2

By the induction hypothesis, Theorem holds for Wy, Wy, and W1 N Wa.
Applying the Mayer—Vietoris argument above, it follows that the statement
holds for M = W7 U Ws.

O
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Solutions to exercises

Exercise By Theorem we have H™(M') = R. By Stokes’ The-
orem, both [,, f*w and [;,w depend only on the cohomology class of w.
Moreover, replacing w with a constant multiple does not change the ratio
that defines deg(f). Therefore, the formula for deg(f) is independent of the
choice of w.

Suppose ¢ € M’ is a regular value of f (which exists by Sard’s Theorem).
Since dim M = dim M, for any p € f~1(q), the differential d,f: T,M —
T,M' is an isomorphism. Therefore, on a sufficiently small neighborhood
U of p, the map f is a diffeomorphism onto its image. In particular, the
preimages of ¢ are isolated points. Since M is compact, f~1(q) is a finite
set:
Y @) ={p1,- ..o} C M.
Furthermore, we can choose a sufficiently small neighborhood U’ of g such
that
LU =u,u---uU,

is a disjoint union of neighborhoods U; of p;, each of which maps diffeo-
morphically onto U’ under f. By Theorem there exists an m-form w
supported in U" whose cohomology class generates H™(M') = R. For each
pi, let e; = £1 depending on whether dp, f: T,, M — T,M’ is orientation-
preserving or not.

We have

freebhrerge o (£

We conclude that
k
(23.3) deg(f) = & €L
i=1

In other words, deg(f) is the signed count of preimage points of a regular
value ¢, with signs determined by comparing orientations. [l

Exercise In the context of holomorphic maps between closed holo-
morphic manifolds of the same dimension, the conclusion of the previous
exercise takes a simpler form. Since holomorphic diffeomorphisms are al-
ways orientation-preserving (see the solution to Exercise , the degree
of a holomorphic map is simply the actual number of preimage points of a
regular value q.
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We now show that every degree-d polynomial
p(z) = 2t ag 12N 4 ag

defines a holomorphic map p: CP' — CP!. It is then easy to see that its
degree is d, because for generic ¢ € C, the equation p(z) = ¢ has exactly d
solutions. As in Exercise to extend the function p: C — C to CP!, we
must specify the image of the added point co = [0 : 1] and show that p is
holomorphic near that point. First, we simply define

p(00) = 0.

Let w denote the local coordinate near oo, related to the coordinate z on
C by w = 1/z; see the solution to Exercise With respect to the local
coordinate w on both the domain and the target, the function p takes the
new form
1 _ w?

p(1/w)  1+ag_qjw+ ...+ agw?’

For w sufficiently close to 0, the denominator is nonzero, and the expression
defines a well-defined holomorphic function. We conclude that p: CP!' —
CP! is holomorphic. O

w —

Exercise [23.5] Switching € and Cy corresponds to composing f with
the antipodal map ¢ — —¢q of S2. The latter is an orientation preserving
diffeomorphism. Therefore, it does not change the degree.

For the second part, it is useful to extend the definition to links which are
disjoint union of embedded circles. Therefore, let each of M; and Ms be a
finite disjoint union of S', and let

y1: My — R3 and 79: My — R3
be embeddings with disjoint images L1 and Lo. As before, define
f: My XM2—>S2, (p17p2) — ’Y1(p1)—72(p2) )
|71 (p1) — Y2(p2)|

and let the linking number ¢(L;, L) of L; and Ly to be the degree of the
map f. It is clear that ¢ is additive in components of L1 and L.

Lemma 23.10. If C1 bounds an oriented surface ¥ (such that the orienta-
tion on Cq is the boundary orientation), then ¢(Ly, L) = 0.

Proof. The map f is the restriction to boundary of the well-defined smooth
map

Y1(P1) — 72(p2)

1 (p1) = 72(p2)]

F:Yx My — 5%, (p,q) —
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If w is a volume form of S?, then dw = 0 and by Stokes’ Theorem

0= / Fdw = / d(F*w) = / f*w = E(Ll,Lz).
X Mo S X Mo My x M2

O

Moving to the general case, suppose L1 bounds an embedded surface trans-
verse to Lo. Let {p1,...,pr} denote the points of intersections of ¥ and
L. Removing sufficiently small balls B; on Y centered at p; produces
a new surface Y’ with additional boundary components ~i,...,7.. Let

Y = L1 U~ U--- U~y where 7; are given boundary orientation of X'
By the Lemma above,

¢(L},Ly) = 0.

Therefore,

ULy, Ly) = = 3 (%, La).

Therefore, it is enough to prove that ¢(v;, L2) = +1 depending on the sign
of intersection of ¥ and Lo and p;. Note that the boundary orientation on
~; coming from ~; = 0B; is the opposite of the boundary orientation coming
from 7; = 0Y'. Therefore, the desired result follows from the following
lemma.

Lemma 23.11. Suppose Cy C R? is an oriented embedded circle, p € Cs,
and D is a sufficiently small oriented disk intersecting Co transversely at p,
with boundary v = 0D. Then

f(’}/, 02) = :|:1,

depending on whether the direct sum orientation on T,D ®T,Cs agrees with
the standard orientation on R3 or is opposite to it.

Proof. Without loss of generality, and after applying a linear transforma-
tion, we may assume that p = 0 € R? = R? x R, that

D = {(z,y) e R? : 2? + y* < &%} x {0}
for some sufficiently small ¢ > 0, and that Cy is transverse to the plane
z = 0 with TyCs = 0,. Choose a direction v in

St ={(z,y) e R?: 22 + 4> =1} x {0}
such that the line R - v intersects Cy only at 0 € R3. Then, viewing v as a
point in S?, we find that f~!(v) consists of a single point p = (—cv,0) €
v x Cq. Tt is easy to verify (using the transversality of C5 to the plane z = 0)

that v is a regular value. It follows from ([23.3)) that deg(f) = £1, depending
on whether d, f is orientation-preserving or reversing.
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Now observe that the vector fields 0y on v and J, on Cs determine an
oriented frame for T),(y x C2). Under d, f, this frame is mapped to (9, 0;)
at v, which is an oriented basis for 7},5%. Therefore, dyf is orientation-
preserving, and hence deg(f) = 1. O

O



Chapter 24

Flow of vector fields
and Lie derivative

Ordinary differential equations (ODEs) arise naturally in the study of mo-
tion and change, with their origins rooted in classical mechanics. Newton’s
laws, for instance, describe how the position and velocity of a particle evolve
over time, leading directly to second-order differential equations. More
broadly, an ODE expresses how a quantity changes infinitesimally in re-
sponse to another — often time. From a geometric point of view, ODEs form
a bridge between vector fields and diffeomorphisms: a vector field gives a
direction of motion at each point, while the solutions to the associated ODE
— called integral curves — trace out the actual paths followed. In this sense,
diffeomorphisms can be thought of as the “integrated” versions of vector
fields, capturing how points move under their flow. We will use these dif-
feomorphisms to understand how tensors change along a vector field. This
leads us to the notion of the Lie derivative.

Definition 24.1. Suppose M is a smooth manifold and X is a smooth
vector field on M. The ordinary differential equation (ODE) associated to
X with initial value pg € M is given by

2(t) = X(z(t),  «(0) = po,

where #(t) denotes the derivative of x(¢) with respect to the “time” variable
t. A solution to this equation is a smooth curve x: I — M, for some time
interval I 3 0, such that z(0) = pp and the tangent vector to the curve at
x(t) is equal to the vector X (z(t)). In other words, the curve follows the
direction of the vector field X at every point.

223
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Remark 24.2. If the manifold has a boundary, the domain I of a solution
curve may be a closed or half-open interval. For manifolds without boundary,
the maximal interval of existence is always an open subinterval of R. To keep
the discussion focused, we will sometimes consider only the boundaryless
case below.

In local coordinates © = (z1,...,Zy) on a neighborhood of py, the vector
field X takes the form

X(2) =Y ai@) o,
=1

and the solution curve zP°(t) starting at py corresponds to a collection
(z1(t),...,zm(t)) of m smooth functions satisfying the system of equations

&; = a;i(x(t)) foralli=1,...,m.

Thus, calculations can be carried out locally in R™, and as we move along
the integral curve, we can transition from one coordinate chart to another
to cover its entire domain. As a result, many results about ODEs on R™
naturally extend to smooth manifolds with little extra work. However, the
nontrivial topology of a manifold can lead to interesting long-term behaviors
that make the theory richer and more subtle than in Euclidean space.

The following is the fundamental existence and uniqueness theorem in the
theory of ODEs; c.f. [Leel3l, Theorems 9.11 and 9.15].

Theorem 24.3. (1) Suppose M is a smooth manifold without bound-
ary. Then for every point pg € M, there exists a mazximal open
interval I = I, = (—a,b), with a,b € Ry U {oo}, on which the
solution zP°: (—a,b) — M to the ODE

i(t) = X(z(t),  2(0)=po
is defined and unique. As t approaches —a or b, the solution “es-
capes to infinity” in the sense that it eventually leaves every compact
subset of M. If M has a boundary, the solution may hit the bound-
ary in finite time, in which case the maximal interval of existence
may be half-open or closed.

(2) The endpoints (a,b) = (a(po),b(po)) and the solution curve vary
smoothly with the initial point pg.

Putting all initial points together (and assuming that M has no boundary),
the second statement implies that there exists an open subset U C R x M
on which the flow function

.U — M, (t,p) — 2P(t)

is defined and smooth. In the special case where M is closed (i.e., compact
with no boundary), and in many other examples, we have U = R x M. This



24. Flow of vector fields and Lie derivative 225

is the setting that will arise in most of the exercises below.

Originally, we fixed the initial point and let ¢ vary to obtain a curve. Now,
we fix t and allow the initial point p to vary. This gives a map

O Up:=UnN{t} x M) — M,
where Uy C M is the set of points for which the flow exists at time ¢t. It
follows from the uniqueness of solutions to ODEs that
Qpody =Dy

on the domain where both sides are defined.

Remark 24.4. If U, = M, then &, is a diffeomorphism of M, with inverse
®_;. More generally, as t — 0, the sets U; expand and exhaust M; that is,

M:Uw
t>0

Therefore, in the limiting definitions that follow, we may treat ®; as though
it is defined on all of M.

Exercise 24.5. Find the solutions to the ODE
T = Az

on R™, where A is a constant m x m matrix. Also, find the solutions to the

ODE

i = 2
on R. For which (if either) of these two equations are the solutions defined
for all time?

Exercise 24.6. Compute the flow of the vector field

n
X = Z:Czayz
=1
on R?" with coordinates (x = (21,...,Zn), Y = (Y1, .-, Yn))-

Exercise 24.7. Suppose X is a smooth vector field on a smooth manifold M
and there exists a smooth function f: M — R such that X - f = df (X) > 0.
Show that the flow of X has no periodic orbit (i.e., an integral curve v: R —
M such that y(t+7T') = y(t) for some fixed T' > 0 and all ¢ € R). Show that
the flow of any gradient vector field V f has no non-constant periodic orbit.

Exercise 24.8. Let X be a smooth vector field on a manifold M and
f: M — R4 be a smooth function. Show every integral curve of fX is a
reparametrization of an integral curve of X. Prove that there is f: M —
R, such that every integral curve of fX is defined over the entire R.
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We can use the diffeomorphisms ®; to push forward vector fields (via d®;)
or pull back differential forms (by composing with d®;), and study how
these objects change as ¢ varies. This leads to a notion of differentiation
along the flow of X for vector fields and differential forms, known as the Lie
derivative. For vector fields, we show that this derivative coincides with the
Lie bracket defined in Corollary From this perspective, the Lie bracket
describes the extent to which the flows of two vector fields fail to commute.
We also prove an explicit expression for the Lie derivative of differential
forms, known as Cartan’s formula.

Definition 24.9. Suppose @, is the flow of a vector field X on a manifold
M. For another vector field Y on M, the Lie derivative of Y along X is

the vector field

®,).Y —Y
L}XY:hmi( J —

t—0

which is defined at every point z € M by Remark Similarly, for any
differential form 7 on M, the Lie derivative of 5 along X is the differential
form
(®)*n—n

t b
which has the same degree as 7. In particular, for a differential 0-form, that
is, a smooth function f: M — R, we have

()" f - f

Lxn=1
XN tg%

o o %) — f(p)

(Lxf)(p) = lim =" —L| = lim .
241 f@P) = f@0)
(24.1) = lim t — df(7(0))

= d,f(X(p) = X - 1] ;

i.e., the Lie derivative of a function is simply the derivative of the function
in the direction of the vector field.

Remark 24.10. In the definition of the Lie derivative of a vector field,
the arrow placed above L is nonstandard notation. We have included it to
remind the reader that push-forward with respect to ®; is being used. In
fact, as we will explain in the next section, to maintain compatibility with
the Lie derivative of differential forms, it is desirable to pull back vector
fields as well. Since ®_; is the inverse of ®;, pulling back via ®; corresponds
to pushing forward via ®_;. Therefore, we may define

(D_),Y - Y
e

This is indeed the definition found in many sources. Since ®_; is the flow
of —X, it follows that

LY =1
“X tg%

LxY = -LxY.
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Theorem 24.11. Suppose ®; is the flow of a vector field X on a manifold
M. For any other vector field Y on M, we have

LxY =1[Y,X] (orequivalently LyY = [X,Y])
Also, for any differential form n on M we have
Lxn= d(LXn) +1x (dn).

Proof. Since [Y, X] is defined as the commutator of the derivations corre-
sponding to X and Y, to prove the first relation, it suffices to show that
both sides act identically on any smooth function f: M — R. We compute:

() Pl = ( (1 PF=2) )

t—0 t

p

i (V- (F 0 @) (@i(p) — (V- )(D)
t—0 t

By (7.1]), there exists a function g(¢,p) such that

fo®i(p) = flp)+tg(t,p)
with ¢g(0,p) = %(f o <I>t)|t:0 = (X - f)(p). Substituting this expansion into

1), we get:

(24.3)
(5x¥) - 1)y = tim D@D ZCEIC) iy o0, )y (0, 0)

= (=X Y- f+Y-X-f)p) = (Y, X] /)(p)

This proves the first statement.

(24.2)

To prove Cartan’s formula, we compare the Lie derivative operator Lx with
the operator dotx + tx od. We show that these two operators agree on all
differential forms by verifying the following:

(1) Both operators satisfy the Leibniz rule:
Lx(m Amg) = Lx(m) Amz+m A Lx(n2),
and similarly for dotx + tx o d.
(2) They agree on functions, i.e., differential 0-forms:
Lxf=ux(df)=X-f.
(3) They agree on 1-forms n:
Lxn =d(txn) + tx(dn).

Since smooth functions and 1-forms generate the algebra of all differential
forms under wedge product, and both operators satisfy the Leibniz rule, it
follows that

Lx =dotx +ixod
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on all differential forms.

Item (2) was already established in (24.1)). To prove that both operators
satisfy the Leibniz rule, we compute:

(24.4)
. D, )* A — AN X D) A (Dy)* ng — A
LX(771/\772>:}5%( ) (m 712) m A2 :%E}%( £) A ( tt) N2 —n1 A2
o)) — ®;) 1y —
:lim<( m—m o (@7 772>
t—0 t t

= Lxni An2+m1 A Lxna.
So L x satisfies the Leibniz rule.

We now verify that d o tx + tx o d satisfies the same rule. First, recall:
ex (m Amz) = exm Amg + (1) A uxn.
Applying d gives:
doux(m Anz) = d(exm Anz + (—1)9B Mg A ux)
= d(exm) A+ (=1) 4B XMy A dn
+ (—1)deem [dm Avxng 4 (—1)9e8mp A d(LXng)] .

Now compute tx o d(n; Ang). Since
d(m Amg) = diy Az + (=1)% Mgy A dip,
we get
ex o d(m A1) = ix (dm A+ (1) My A dng)
= ux(dim) A+ (=1)%8 M dny A uxny
+ (—1)deem [Lxm Adny 4 (—1)de8mp A LX(dng)] .
Adding the two expressions gives:

(dotx +ixod)(mAng) = (dotx +ixod)(m)Ana+mA(dory +ixod)(n2),

so this operator also satisfies the Leibniz rule.

Finally, to prove item (3), we verify directly in local coordinates that the
two operators agree on 1-forms.

Choose local coordinates (z1,...,%n), and write
X:Zai(ac)(?%, U:ij(ac)dwj.
i J

By linearity and the Leibniz rule, it suffices to check the case where n = dz;.
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On one hand,
(douvx + tx od)(dz;) = d(txdx;) = d(aj ).

On the other hand,

(®)*daj — du;

Lx(dz;) = lim

t—0 t >0 t
. xjody—x;\ . N '
—}g%d<t ) = d(z;) = d(a;).
Hence, both operators agree on 1-forms. [l

Example 24.12. If M is an oriented m-manifold equipped with a volume
form w, then

Lxw = d(1xw) = Div,(X)w,
where Div,(X) denotes the divergence of X with respect to w, as defined
earlier in Section If Div,(X) = 0, this means that the flow ®; of X

preserves the volume of any m-dimensional region, although it may distort
its shape.

Exercise 24.13. Let

For a volume form
w = fdxr ANdy

on R?, show that Lyw = 0 iff f is a function of distance from the origin.

Exercise 24.14. Suppose w is a 2-form on a manifold M. We say that w is
non-degenerate if w(u,-) = 0 implies u = 0 for all u € T,,M. In other words,
the map

T,M — Ty M, uw w = w(u,-)
is an isomorphism. (This is the skew-symmetric analogue of a Riemannian
metric.)

Now suppose w is closed and non-degenerate. Such a form is called a
symplectic form. By the isomorphism above, for every smooth function
h: M — R, there exists a unique vector field X defined by

txw = —dh.

(1) Show that Lxw = 0.

(2) Show that h is constant along integral curves of X. (The vec-
tor field X is called the Hamiltonian vector field associated to the
Hamiltonian function h, and the ODE defined by X is called a
Hamiltonian system.)
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(3) Show that the action
St x C" = C",  (e",(21,...,20)) = (e"21,...,€"2,)
is Hamiltonian with respect to the symplectic form
w=dzri ANdyy + -+ dxy A dyn,

on C" = R?" where x; and y; are the real and imaginary parts of
z; = x; + iy;. That is, the orbits of this action are integral curves
of a Hamiltonian vector field.

Remark 24.15. Hamiltonian ODEs arise naturally in classical mechanics,
where the function h is typically the energy of the system (often the sum
of kinetic and potential energy). The condition txw = —dh encodes the
equations of motion, and the fact that L xw = 0 implies that the symplectic
structure — and hence the phase space volume — is preserved under time
evolution. The conservation of h along integral curves of X reflects the
physical principle of energy conservation.

Exercise 24.16. Let (x,y,z,w) be the standard coordinates of the Eu-
clidean space R*. Let X = 0, and w = (xyz)dz A de. Compute the Lie
derivative Lxw.

Exercise 24.17. Let m > 2, and let M be a smooth oriented m-manifold
equipped with a volume form w. For any (m — 2)-form n € Q™~2(M), show
that the equation

txw =dn
defines a unique vector field X on M associated to 1. Show further that
this vector field is volume-preserving, in the sense that the volume form w
is invariant under its flow.

What cohomological condition on M is equivalent to the statement that
every volume-preserving vector field arises from some 7 in this way?
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Solutions to exercises

Exercise If m =1, then A is a constant and the ODE
T = Ax

can be rewritten as % In(x) = A, which has the solution z(t) = e*42(0) for
any initial value x(0). The same formula makes sense when A is a matrix
rather than just a number, where

o
A _ N (EA)"
e = Z n!
n=0
The solutions are thus defined for all time ¢.
Similarly to the previous example, we can rewrite & = 22 as
d 1
(=Y =1
Sl =1,
which has the solution
—eH(t) =t —27(0),
or
0
a(t) = &
1 —tx(0)
Clearly, as t — ﬁ, the solution approaches co. We conclude that for initial

values x(0) # 0, the solutions are not defined for all time. For z(0) = 0,
the solution z(t) is constantly 0; i.e., x = 0 is a fixed point of the ODE flow
>, O

Exercise The ODE equations of X are
;=0 and 9; =z Vi=1,...,n.

Therefore, on any integral curve, the x;-coordinates are fixed and the y;-
coordinates change linearly by tz;; i.e.,

(x(2),y(t)) = (x(0),¥(0) + x(0)).
O

Exercise By the chain rule, the condition X - f = df(X) > 0 means
that f is increasing along integral curves v of X. The only increasing func-
tions on S! are constant functions. This can only occur if 7 is the constant
map y(t) = p, which implies X (p) = 0, and hence p is a fixed point of the
flow of X.

For any Riemannian metric g on M, we have

df(Vf) =g(Vf,Vf) =0,
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with equality if and only if Vf = 0. The result now follows from the discus-
sion above. (]

Exercise Suppose
y: I —M

is an integral curve of X i.e., 4(t) = X (v(t)) for all ¢t € I. Suppose
h:J—=1, s+ t=h(s),

is a reparametrization of I by a smooth map, and define ¥(s) = v(h(s)). By
the chain rule,

%ﬁ(s) = (jg) (h(s)) - % — X(7(s)) - %'

If

S G0)]

then 7 is an integral curve of fX, showing that every integral curve of fX
is a reparametrization of an integral curve of X. To find the appropriate h,
it is easier to determine its inverse, since the equation above implies

ds 1 1 1

dat T fG(s) ls=ni)  F(0)

Given the integral curve ~(t), we find that

o= | Rk

has the desired property.

For the second part, if M is compact, then any smooth vector field on M
is complete, i.e., all its integral curves are defined for all time. In this case,
taking f = 1 suffices. Thus, we may assume that M is non-compact. We
want to choose f such that the range of h~! is all of R for each integral curve
of X. In other words, as p approaches the “infinity” of M, the function f(p)
must decay to zero sufficiently fast.

Let {K;}n>0 be an exhaustion of M by compact subsets such that
K,C K2, and | Kn =M.
n>0

For each n, choose a smooth function x,: M — [0,1] such that y, = 1
on K, \ K7_,; and supp(xn) C K5, \ K,—2. (Here we define K, = 0 for
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n < 0.) We will use this to construct a Riemannian metric g on M with the
following property: for any ng,

nhﬁrrolo distg(Kr, M\ K;,) = 0.

In other words, as n — oo, the length of any curve that starts in K,,, and
exits K, must diverge.

Let gy be an arbitrary Riemannian metric on M. Set ¢y = 1. For each
n > 0, choose ¢, > 0 such that

distcngO(Kn_l,M \K,)=1.
Then define

S
g= (Z Can) 80o-
n=0

This sum converges because every point p € M lies in the support of at most
three of the y,. Moreover, g satisfies the desired property because

n
distg(Kny, M\ Kg) > > disty(Ke—1, M \ K7)
Kzno-‘rl

> Y diste,g (Ke—1, M\ K7) =n — nq.
l=ngp+1

With respect to the Riemannian metric g defined above, let

9(p) = Ve(X(p), X(p)) VpeM.
Let f: M — R, be any smooth function such that

1
f p) S R
( 9(p)
or equivalently,

1
m > g(p)

for all p € M. Then the vector field Y = fX satisfies |Y(p)] < 1 for all
p € M. Therefore, any integral curve of Y defined over a finite interval [a, b)
or (b, a] remains in some K,,. By Theorem any maximal integral curve
of Y must be defined on all of R. ([

Exercise 24.13l We have
—1
Lxw = dixw = —d(f(z,y)(ydy + zdz)) = 7d(f(7“, O)rdr) = T9L gr A do.
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Therefore, Lxw = 0 iff f is a function r. (]

Exercise [24.14| Since w is closed, we have
Lxw = dixw = —d(dh) = 0.
We have
X -h=dh(X)=-w(X,X)=0.

Therefore, h is constant along integral curves of X.

Differentiating the action with respect to ¢ we get
d it i

—(e*21,...,e

A

We conclude that each (ez,..., ¢’

2=X(z) =1z

b)) = i€z, ... et2,).

2,) is an integral curve of the ODE

In real coordinates,

n
X(z1,- s Tny Yl ey Yn) = Z—yﬁxi + 2,0y,

i=1
Therefore,
RS 2 2
=
We conclude that the action in the question is the hamiltonian ODE flow of
the hamiltonian h = 337 | 27 + y2. O

Exercise 24,16l We have
Lxw =dip,w + tp,dw = d(zyz dz) + 1y, (xz dy A dz A da)
rydz Ndx +zzdy Ndr — xzdy Ndx = zy dz Adz.

Exercise The map

D(M,TM) — Q™ Y(M), X +— ixw
defines an isomorphism between the space of vector fields on M and the space
of differential (m — 1)-forms (see the solution to Exercise [17.1)). Therefore,
for any (m — 2)-form n € Q™2(M), there exists a unique vector field X
satisfying

Lxw = dn.

The Lie derivative of w with respect to X is

Lxw = dixw = d(dn) = 0.
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Therefore, the volume form w is invariant under the flow of X.

Conversely, suppose

L Xw = du XW = 0;
i.e., txyw is a closed form. If H™ (M, R) = 0, then every closed (m — 1)-
form is exact, and there exists n € Q™ 2(M) such that 1xw = dn. This
condition is both necessary and sufficient, since any closed (m — 1)-form can
be written as ¢xw for a unique vector field X.






Chapter 25

Tensor fields and Lie

derivative

In previous sections, we have studied various examples of tensors, such as

vector fields, differential forms, and metrics. In general, given a finite-

dimensional real vector space V, a tensor of type (p,q) is an element
TeVX - xVXV*x---xV".

g

p copies q copies

Equivalently, a tensor is often defined as a multilinear map

T: VX xV*xXVx---xV —R.

p copies q copies

Examples of tensors on a vector space V:
e Type (0,0): Scalars (real numbers).
e Type (1,0): Vectors (elements of V).
e Type (0,1): Covectors or linear forms (elements of V*).

e Type (1,1): Linear transformations (elements of V@V* = Hom(V,V)).

We can then require additional properties. For instance, symmetric positive-
definite (0, 2)-tensors correspond to inner products on V.

The above definition extends pointwise to any vector bundle £ — M, and
in particular to the tangent bundle T'M of a smooth manifold.

Definition 25.1. A tensor field of type (p,q) on M is a smooth section
of the bundle

TM®P @ T*M®1,

237
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Common examples of tensor fields on a manifold M:

e Type (0,0): Smooth functions on M.
e Type (1,0): Vector fields.
e Type (0, k) and skew-symmetric: Differential k-forms.

Type (0,2), symmetric and positive-definite: Riemannian metrics.

In the previous section, we studied the Lie derivative of vector fields and
differential forms and obtained explicit formulas in each case. A natural
question is whether these two notions of Lie derivative are related.

In fact, the Lie derivative can be defined for arbitrary tensor fields, and
it satisfies a product rule in the following sense: if 7 is a tensor field of
type (p1,q1) and 7o is of type (p2,q2), then 71 ® 79 is a tensor of type
(p1+ P2, q1 + q2), and

(25.1) Lx(m®m)=(Lx7m)®7+7 @ (Lx).

To define the Lie derivative for tensors of mixed type, one must apply the
same operation — either pullback or push-forward — to both the TM and
T*M components. In order to preserve Cartan’s formula, it is standard
practice to use pullbacks: that is, to define the Lie derivative of a (p, q)-
tensor, we apply ®F := (P_;), to the p vector field components and ®; to
the g covector components. In conclusion, the operator
it — 71
LyT = lim —4—~
X7 tE}(l) t

is well-defined on all tensor fields. It recovers the identity Lxn = (dotx +
tx o d)n for differential forms and LxY = [X, Y] for vector fields.

For the rest of this section, we adopt the pullback convention and simply
write LxY when referring to the Lie derivative of a vector field.

Lemma 25.2. Lie derivative of tensors satisfies the Leibniz formula (25.1]).

Proof. As in (24.4), since pullback and tensor product commute, we have

oF —
Lx (11 ® 12) = lim ((n®mn) — (n®mn)

t—0 t
~ lim @:(Tl) ® @:(Tz) — @?(Tl) & T9 + q)f(ﬁ) XRTo—T1 X T2
T =0 t
_ i 2E(1) ® (PE(72) — 72) + (2f(11) — 1) @ 2

t—0 t

=Lx(m)®7+ 71 ® Lx(72).
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Remark 25.3. The general product formula above, and the scalar version
we use below, are related by “taking the trace.”

Given a (p,0)-tensor 71 and a (0, p)-tensor 7o, we can form their tensor
product 7 = 7| ® 79, which is a (p, p)-tensor. The Lie derivative of 7 satisfies
the Leibniz rule (25.1)), producing an equality of (p, p)-tensors.

On the other hand, contracting 7 and 7y yields a smooth function f =
To(71), whose Lie derivative also satisfies a product rule:

Lxf = (Lx7e)(m1) + 72(LxT1).

These two formulas are related via the fact that contraction is compatible
with the Lie derivative: taking the Lie derivative of a contraction is the same
as contracting the Lie derivative.

In this sense, the scalar product rule arises from the tensor-level formula
by “taking the trace.” Our proof of this compatibility below is given in the
specific context of vector fields contracting differential forms.

As a starting point, suppose 7 is a differential 1-form, and X, Y are vector
fields. Then the function f = n(X) is smooth, and we will prove that

df(Y)=Y - f=Lyf=(Lyn)(X)+n(LyX).
Using the formulas from the previous section, we compute:

Y- (n(X)) = (deyn)(X) + (eydn)(X) — n([X, Y])
=X - (n(Y)) + (dn)(Y, X) = n([X,Y]).

Rearranging terms gives the following formula for dn in terms of how it acts
on vector fields:

dn(X,Y) =X - (n(Y)) =Y - (n(X)) — n([X,Y]).
In general, we obtain the following;:

Theorem 25.4. If n is a k-form, then dn is the (k + 1)-form whose action
on k + 1 vector fields Xy, ..., Xy is given by

(25.2)
k . —_
(dn)(Xo, ..., Xx) = > (-1 X; -n(Xo,..., X, ..., Xp)
j=0
+ 3 (=1 ([Xi, Xj), Xo, - Xiyo oo, Xy, Xi).
1<J

Here, we provide a computational proof based on calculations in local charts.
A coordinate-free proof is also possible by applying the product rule and
expanding Lx,(n(X1,..., X)), as we did above.
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Proof. It is easy to verify that the equation is local, linear in each input,
and skew-symmetric on both sides. So we only need to verify it for a single
local expression
n=f(x)dzy N--- Ndz;,,

and X, = go(7) Oy,, for a = 0,...,k. To eliminate the coefficients g, and
simplify the task, we first prove that if holds for (Xo, ..., X%), then
it also holds for (g(x)Xo, X1,...,X). By symmetry, the same is true if we
modify other inputs.

Using the identity
[9X0, Xi] = g[Xo, Xi] — (Xi - 9) Xo,
we compute:

(d’l’])(gXo,Xl, e ,Xk) — gXo . 77(X1, e ,Xk)

k
- Z(—1)axa n(gXo, . s Xay ooy Xp)
a=1

- Z(_l)an([gX()a Xa]7X17 v 7)/(:17 ) Xk)
a=1

- Z ( 1)a+bn([Xava]7gX07 a)/(;v 7)/(\bv ,Xk)
1<a<b<k

k
- g((dn)(Xo,...,Xk) S -1 Xa - 0(Xos o X X))

a=0
- Z ( 1)a+bn([Xa7Xb]7X07 7Xa7 75(\177 7Xk’))
0<a<b<lk
k —_
_Z(_l)a(Xa 'g) TI(X07 7Xaa 7Xk)
a=1
k —_
+ (=DYX - g) n(Xo, - Xp, -, Xp).
b=1

The last two terms cancel out, and we obtain the desired result.

Having reduced the problem to the case X, = 0, foralla =0,...,k, we
compute:

(25.3)
of
(d'l’])(XO, N 7Xk') = Z % (deO A dwil A A dxlk) (6mj0, ey 8x]k)
io to
of
= Y - (Aig Adaiy Avoe Ndiy) (D O, )
10

10€{Jo,-»Jk}
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On the other hand,

k
Z(—l)“Xa-n(XO,...,Xa,...,Xk)
a=0
+ 3 (1) ([ Xa, Xo), X0, - - Xas -, Xby -, Xi)
a<b
_Z %( )dxil/\..-/\d:cik(axjo,...,(i;,...,(%jk))
_Z : (daj, A dag, A+ Adai) (D, Oy Oy s Oy )

(9x Ja

Moving 0., forward to its correct position eliminates (—1)Ja and we get the
same expression as ([25.3)). (]

Differential 2-forms and metrics are both tensors of type (0,2) — the former
being skew-symmetric, the latter symmetric. Therefore, given a vector field
X and a Riemannian metric g on a manifold M, the Lie derivative of g
with respect to X is the symmetric (but not necessarily positive-definite)
(0, 2)-tensor

drg—
(25.4) Lxg = lim gt § € D(M, Sym?(T*M)).

where ®; is the flow of X. We say that X is a Killing vector field if
Lxg = 0. In other words, the flow of X consists of isometries. We state,
without proof, the following result, which follows from applying the product
rule and expanding Lx(g(Y, Z)) (see [Leel3| Proposition 12.15]).

Theorem 25.5. Let g be a Riemannian metric on a manifold M, and let
X, Y., Z be vector fields on M. Then

(LXg)(Y7 Z) =X g(Y7 Z) - g([X7 Y]7Z) - g([X7 Z]vy)

Exercise 25.6. Recall that a Riemannian metric g identifies the space of
vector fields and 1-forms by sending a vector field Y to the 1-form Y? =
g(Y,—). Show that if X is a Killing vector field, then this identification
commutes with the Lie derivative; that is,

(LxY)’” = Lx(Y").

Exercise 25.7. Let g be the standard Euclidean metric on R?, and let
X = 20, + y0,. Compute Lxg.
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Exercise 25.8. An operator D acting on sections of a vector bundle E
over a smooth manifold M (such as tensor fields) is called tensorial if it is
C*°(M)-linear; that is,

D(f¢) = fD(§) forall feC®(M), el (E).
By first showing that the operators
LxoLy —LyoLx — L[Xy] and LX,Y] — Lxowy +tyolLx
are tensorial, prove the identities

[LX, LY] = LXoLY—LyOLX = L[X,Y] and L[X,Y] == [LX, LY} = LXoLY—LyoLX.
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Solutions to exercises

Exercise We show that (LxY)” and Lx(Y?) act identically on any
vector field Z. By definition,
(LxY)'(2) = g(LxY, Z) = g([X,Y], 2).
On the other hand, using the product rule,
(Lx(Y"))(2) = Lx(Y*(2)) = Y*(Lx Z) = Lx(g(Y, Z)) — 8(Y,[X, Z)).
Therefore, the identity we seek to verify is
which is equivalent to
The latter equality follows from Theorem and the assumption that
LXg = 0.
O

Exercise Using Theorem we find the symmetric (0, 2)-tensor
Lxg by computing its action on basis vector fields. There are three terms
to calculate.

We have
(Lxg)(0z,0r) = X - g(0s, Or) + 28([0z, X], Or).
The first term on the right-hand side is zero, and
[0z, X]| = [0, 202 + yay] =[Oz, 20:] + [ax,yay] = Oy

Therefore,

(Lxg)(0z,0z) = 2.
By symmetry of the problem, we similarly have

(Lx8)(0y, 0y) = 2.
Finally,

(Lxg) (0, 8y) = g([aan]7ay) + g([avaL 9z) =0,
since g(0z, dy) = 0.
We conclude that
Lxg=2g.

This can also be verified directly from the definition . The flow of the
radial vector field X is

Oy(z,y) = ' (z,y).
Therefore,

drg = O} (dr @ dz + dy ® dy) = *'g.
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We conclude that

_ Ay _
Lxg=—(c"g) t:0—2g-

O

Exercise Suppose T is a type (r, s) tensor field and f € C>*°(M). We
will use the Leibniz rule for Lie derivatives,

Lx(fT) = (X /)T + fLxT,
to compute
[Lx, Ly|(fT) = Lx(Ly (fT)) — Ly (Lx(fT)).
Using the Leibniz rule we obtain
Lx(Ly(fT)) = Lx((Y - /)T + fLyT)
=X-Y-NT+ (Y -f)LxT+X-fLyT+ fLxLyT.
Similarly,
Ly(Lx(fT)=Y - (X- )T+ (X-f)LyT+Y - fLxT+ fLyLxT.
Subtracting these, many terms cancel, and we find:
[Lx, Ly](fT) = flLx, Ly]T + (X - (Y - [) =Y - (X - ))T.
On the other hand,
Lixy)(fT) = (X, Y] /)T + fLixT.
So the difference
([Lx,Ly] = Lixy)) (fT) = f([Lx, Ly] = Lixy))(T)

is C°°(M)-linear, hence tensorial.

Similarly, for the second identity, note that the interior product ¢y is tenso-
rial:

wy (fT) = fuyT.
Then,
Lx(y(fT)) = Lx(foyT) = (X - floyT + fLxuwyT,
w(Lx(fT)) = oy (X - )T + fLxT) = (X - flyT + fry LxT.
Subtracting gives:
[Lx,w|(fT) = flLx, v ](T),

so [Lx,ty] is tensorial. Since t[x,y] is also tensorial, their difference is ten-
sorial:

(L[X,Y] — [Lx, LY])(fT) = f(L[X,Y} — [Lx, LY])(T)-
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Since the differences [Lx,Ly] — Lixy) and ¢[x,y] — [Lx,ty] are tensorial,
they are determined pointwise. It therefore suffices to verify that they vanish
on constant tensors at a point.

To simplify things further, we show that both [Lx, Ly | — Lix y] and ¢[x y] —
[Lx,ty] satisfy the Leibniz rule.

Let T7,T5 be tensor fields. Using the product rule for the Lie derivative
repeatedly, we get

[Lx,Ly](T1 ® Tz) = Lx(Ly (T1 ® T2)) — Ly (Lx (11 ® T3))
=Lx((LyTh) @ To + T1 @ (LyT3))
— Ly(LxT1) ® To + Ty @ (LxTh))
= (LxLyTy) ® Ty + (LyT1) ® Lx Ty
+LxTi ® LyTo+T1T1 ® Lx Ly T
— (LyLxT1) @ Ty — (LxT1) ® Ly Ty
— LyTy ® LxTy —Th ® Ly LxT5
= ([Lx,Ly|Th) ® To + T1 & ([Lx, Ly]T5).
On the other hand,
Lixy)(Th @ Tz) = (Lixy)T1) @ To + Ty @ (Lix y1T2).
We conclude that [Lx, Ly]| — Lix,y] satisfies the Leibniz rule.
The proof for ¢[xy] — [Lx,ty] is similar and left to the reader.

In conclusion, we have shown that
[Lx,Ly] = Lixy] and [Lx,ty]=txy]

are tensorial and satisfy the Leibniz rule. Since the differences vanish on
constant vector fields and differential 1-forms (check in your own), they
vanish identically. ([






Chapter 26

Straightening Theorem

Every vector field X is locally of the form

- 0
=1

for some smooth coefficient functions a;. A natural and useful question
is whether there exist local coordinates in which all the coefficients a; are
constant. This would imply that their partial derivatives vanish, greatly
simplifying many calculations. If such coordinates exist (and X is nontriv-
ial), one can further perform a linear change of variables to obtain local
coordinates in which

0

The question becomes more challenging and interesting when one considers
not just one vector field, but several vector fields, and asks whether there
exist local coordinates in which all of them take the form

X

0
X, = ——
! 8%’2
for i = 1,...,k. Surprisingly, this problem has an elegant solution known

as the Straightening Theorem (also called the Flow-box Theorem or the
Frobenius Theorem in the integrable distribution case).

The proof of the Straightening Theorem relies on the relationship between
the Lie bracket [X,Y] of two vector fields and the commutativity of their
flows ®;X and ®). More precisely, for each point p € M and for sufficiently
small ¢, consider the path

~(t) = (I)i—/t o <I>)_(t o @2/ o (I)ff(p).

247
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This path is constant (meaning (t) = p) if and only if the flows ® and
@2/ commute. Moreover, as we will establish in exercises,

(26.1) 0)=0 and - Lo

. Y(0)=0 and 5 -39 i
is exactly the Lie bracket [X,Y](p). Therefore, the vanishing of the Lie
bracket [X, Y] = 0 characterizes the local commutativity of the flows, which

is a key ingredient in straightening vector fields simultaneously.

Theorem 26.1. The flows ® and ®Y of X and Y commute, i.e.,
PV odf 2t o) Vst

if and only if [X,Y] = 0.

Proof. It is a simple yet critical observation that if ¢: M — M is a diffeo-
morphism, then the ODE flows ®X and ®7*~ are related by

@f*x :goo(I)iXogp_l.

Therefore, since ®¥, = (®Y)~!, the composition
Y o 5X o dY
D, 0d; 0D

is the ODE flow of (®Y),X. Hence, the commutativity of ®;X and ®) is
equivalent to

¥ = @Eq’z)*X for all s, t.
Since two flows are equal if and only if their generating vector fields are
equal, this means
X = (V). X for all s.
If this holds for sufficiently small s, then by Theorem

PY) X — X
[X,Y]:nm(s)—:

s—0 S

0.

Conversely, suppose [X,Y] = 0. For every point p € M, define a path v(s)
in the vector space T,M by

7(s) = (@)« (X (X, (p)))-
Thanks to the linear structure on T,,M, we have

V(s +h) —1(s)

i(s) = limy h
— lim (D))« (X (@Y, 1 (p) — ()« (X (DX (p)))
h—0 h
_ (@), im (20 (X(@14()) ~ X(0)
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where ¢ = ®Y_(p). But by the definition of the Lie bracket,

i (@) (X (@Y,(9)) — X(q)
h—0 h

= [X,Y](¢g) = 0.

Therefore, 4(s) = 0, so y(s) is constant and equal to v(0) = X(p). This
implies

X = (®Y). X forall s,
as desired. O

Exercise 26.2. For any p € M, choose local coordinates around p so that
p corresponds to 0 € R™, and write the vector fields X, Y locally as

X(z) =) ai2)ds, Y(z)=) bi(2)0.
=1 =1

Then the Taylor expansion of the flow of X near 0 up to second order in ¢ is
2
oY (z) =z +tX(2) + 5 (DX)(2) - X(2) + o(t%),

where (DX)(x) is the Jacobian matrix of the coefficient functions of X at
x, acting on vectors. The same holds for Y. Use this to prove that for

A(t) == Y, 0 ¥, 0 B 0 B (p),
we have

Y(t) =p+ 21X, Y](p) + O(t%).

Theorem 26.3 (Straightening Theorem). Suppose Xi,..., Xy are vector
fields on a smooth manifold M, and let p € M. Further, assume that

(1) The vector fields X1, ..., Xy are linearly independent on an open
neighborhood of p,

(2) The vector fields commute pairwise; that is, [X;, X;] = 0 on an
open neighborhood of p for all 1 < i,5 < k.

Then there exist local coordinates (x1, ..., xy) defined on a sufficiently small
neighborhood of p such that
0
Xi=—, i=1,...,k.
(2 axl 9y 1 ) Y

Proof. It is simple linear algebra that we can choose local coordinates

(y1,...,Ym) near p such that p corresponds to 0 € R™ and X;(0) = 6%

fori=1,...,k.

Define a map ¢ on a sufficiently small neighborhood of 0 € R™ by
Y1y ey Ym) = @(X1y ooy Ty) = ‘I’il o-- o@i’“(o,...,o,xkﬂ,...,xm).

It is straightforward to check that dpp = idgrm; hence, ¢ is a local diffeo-
morphism fixing the origin.



250 26. Straightening Theorem

Moreover, for each i = 1, ..., k, using the commutativity of the flows (which
follows from [X;, X;] = 0), we compute:

P (aa?z ) |y=<p(m) = dafcp(awi)

d .
= — @ffllo---o@[)i(_ﬁrto~~o@ff’“(O,...,0,xk+1,...,xm)
dt|,_, i k
=7 Py (Pptoro®pio 0 ®2F(0,...,0,Tps1,s - Tin))
tli=o
-2 & (y) = Xily)-
dt|,_o

This completes the proof. ([l

Exercise 26.4. Consider the vector fields
X =f(z)0, and Y =g(y)0,

on R?. Find necessary and sufficient conditions on the pair (f, g) such that
there is a diffeomorphism ¢: R? — R? with

0e(0z) =X and ¢.(0y) =Y.
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Solutions to exercises

Exercise Without loss of generality, take p =0 € R™.
Using the given expansions,

2
5
2
) (z) =z +tY () + 5(DY)($) Y (2) + O().

@%(0) = 0+tX(0) + - (DX)(0) - X(0) + O(t?),
Step 1: Compute ®) o ®;X(0):
®; (7 (0) = 7 (0) + Y (27" (0)) + t;(DY)(‘I)f((O)) Y (@71(0) + O(F).

Expand Y (®;%(0)) near 0:
Y (®X(0)) = Y (0)+(DY)(0)-(tX (0)+0(*)) +O(t?) = Y (0)+t(DY ) (0) X (0)+O(t?).

Similarly,
(DY)(®7(0)) - Y(2(0)) = (DY)(0)Y(0) + O(t).
Thus,
dY o0dX(0) = t(X(O)—irY(O))—i—t;((DX)(0)X(0)+2(DY)(O)X(O)+(DY)(0)Y(O))+O(t3).

Step 2: Apply &%, to the above:
2

,(2) = 2~ 1X() + S(DX)(2)- X(2) + O(F).
Expand X (z) around 0 with
z = t(X(0) + Y (0)) + O(t?),

X(2) = X(0)+(DX)(0)z+0(t*) = X(0) +t(DX)(0)(X(0) + Y (0)) +O(t?).

Similarly,
(DX)(z)- X (2) = (DX)(0)X(0) + O(t).
Hence,
dX,00) 0®X (0) = tY(0)+t22((DY)(O)Y(0)+2(DY)(O)X(O)—(DX)(O)Y(O)—(DX)(O)X(O))—|—O(t3).

Step 3: Apply &Y,

2
@Y, (w) = w — 1Y (w) + T (DY) (w) - ¥ (w) + O().
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Expand Y (w) near 0:
Y(w) =Y (0) + (DY)(0)w + O(t),

with
w = tY (0) + O(t?).
Then,
Y (w) = Y(0) + t(DY)(0)Y (0) + O(t?).
So,

DY, 0 0%, 0 @) 0 ®X(0) =0+ *((DY)(0)X(0) — (DX)(0)Y(0)) + O(t*).
It can be easily checked that
[X, Y](0) = (DY)(0)X(0) — (DX)(0)Y (0).

Therefore,
v(t) = ®Y, 0 X, 0 Y 0 B (0) = 0 4 2[X, Y](0) + O(t%),
which completes the proof. O

Exercise For such a map ¢ to exist, it is necessary that [X,Y] = 0.
We compute:

[X7 Y] = [f(x) ay? g(y) 81’]

= [()[8y, 9(y) 02] = 9(y) 0= (f () By
~ @) 22 o, — 4() Lo,
Therefore, [X,Y] = 0 if and only if
dg(y) df (z)

f()Ty_O and  g(y) == =0.

If % # 0 for some x, then we must have g = 0, which solves the equation

df( ) —

above but does not satisfy ¢.(dy) =Y. Hence, = 0. Similarly, we must

dg(y) =0.

have
We conclude that X and Y must be constant vector fields:
X=a0y and Y =00,

for some constants a,b # 0. Then, the map p(z,y) = (by,ax) satisfies
©4(0z) = X and ¢, (0y) =Y, as desired.
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