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Preface

Studying manifolds and vector bundles is, in many ways, doing calculus in
its most refined and serious form. Over the past century, the foundations
of this subject have been firmly established, and a wide array of texts now
explore these ideas at varying levels of depth and sophistication.

This book grew out of several graduate courses I have taught at the Univer-
sity of Iowa. While many excellent resources exist and have influenced this
book, I have often found it difficult to recommend a single reference that
presents the essential ideas in a coherent order, at a measured pace, with
enough illustrative examples – all within a manageable length.

The structure of the book reflects its classroom origins. It is formatted for a
one-semester course and is organized as a sequence of lectures, each designed
to cover a natural chunk of material suitable for one or two sessions. To some
extent, the format and selection of topics are aimed at students preparing
for PhD qualification exams. The intended audience includes primarily first-
year graduate students, though the material is also accessible to advanced
undergraduates with a good grasp on real analysis, point-set topology, multi-
variable calculus, and linear algebra. Thanks to the inclusion of detailed
solutions to all exercises, the book is also suitable for independent study.

Throughout, I have placed strong emphasis on examples and computations.
Abstract definitions are consistently followed by concrete calculations and
carefully chosen exercises, designed to help readers internalize key ideas and
prepare for more advanced work. I have repeatedly observed that some
students can learn and recite theorems – even reproduce their proofs – yet
struggle with applying concepts in explicit computations. For this reason,
all exercises in the book are accompanied by detailed solutions. While some
books offer a large number of exercises, many of which involve results not

ix



x Preface

covered in the main text, here the exercises are primarily computational and
closely tied to the core material.

While the book contains many proofs, they are included only when relevant
to understanding the broader framework of manifolds and vector bundles.
Local analytic results such as the inverse function theorem or Sard’s theorem
are used but not proved, as they are standard in real analysis and do not
rely on the global structure central to this text. The style of exposition is
precise and abstract, with decent use of geometric pictures wherever it helps
with digesting the materials.

Unlike texts that front-load extensive background material before introduc-
ing manifolds and vector bundles, this book integrates the necessary tools
from analysis, topology, calculus, and linear algebra as they arise. This
approach allows readers to enter the subject more directly, encountering
foundational results in the context where they are needed. For certain re-
sults whose proofs are not central to the book’s conceptual development, I
have provided explicit references to other texts.

The book deliberately avoids extended motivational discussions and histor-
ical digressions, in favor of maintaining focus and brevity. That said, some
brief connections between topics are provided to help orient the reader.
Certainly, this book does not aim to be a complete reference on manifolds
similarly to Michael Spivak’s five-volume series on manifolds. Its main mis-
sion is to teach the essentials needed for working with manifolds and vector
bundles.

I hope this approach offers a clear and inviting path into a beautiful and
profound area of mathematics.

Looking ahead, I plan to write a direct sequel to this book covering topics
in algebraic and differential topology. The forthcoming volume will explore
singular homology, cellular homology, sheaf cohomology, Morse homology,
and their connections to the de Rham cohomology developed here. It will
also introduce characteristic classes, more specifically Chern classes, along
with other advanced topics that mark the transition from classical theory to
the frontiers of current research. In short, this volume is intended for first-
year graduate students, while the next is aimed at second-year students
looking to deepen their understanding of manifolds and related ideas.

Mohammad F. Tehrani
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Chapter 1

Continuous manifolds

Roughly speaking, a manifold is a topological space that locally resembles
Euclidean space. Globally, a manifold is constructed by patching together
countably many such local pieces, called charts. In general, manifolds are
not homeomorphic to Euclidean space or even to an open subset of it. For
example, the sphere is not homeomorphic to the plane. In the following sec-
tions, we will introduce tools for distinguishing between different manifolds.

Manifolds appear in many areas of mathematics and physics and are of-
ten equipped with additional structures – such as a metric, a holomorphic
structure, or a symplectic form – depending on the context. Here, we will
primarily focus on manifolds endowed with either a differentiable or a
holomorphic structure. Although there exist topological manifolds that do
not admit any smooth structure, the category of smooth manifolds includes
nearly all classical and well-studied examples. A differentiable structure
enables the generalization of calculus on Euclidean space to manifolds.

We begin by recalling some definitions and results from general topology;
for details, see [Mun75].

Definition 1.1. Let M be a topological space. We say that M is:

(1) Hausdorff, if any two distinct points in M can be separated by
disjoint open sets;

(2) Regular, if singleton sets are closed1, and for every point p ∈ M
and any closed subset C ⊂M not containing p, there exist disjoint
open sets separating p and C;

1Alternatively, one may assume M is Hausdorff.

1



2 1. Continuous manifolds

(3) Normal, if singleton sets are closed, and any two disjoint closed
subsets of M can be separated by disjoint open sets;

(4) Paracompact, if every open cover of M admits a refinement that is
locally finite—that is, each point in M has a neighborhood inter-
secting only finitely many sets in the refinement;

(5) Metrizable, if the topology on M is induced by a metric (i.e. a
distance function);

(6) Second-countable, if M has a countable basis. That is, there exists
a collection of open sets B = {Uα}α∈I such that every open set in
M can be written as a union of sets in B, and I is a countable
index set.

The following results relate some of these properties. First, note that second-
countability is a stronger condition than metrizability. Moreover, every
metrizable space is normal, and hence also regular and Hausdorff. The
next theorem also shows that every metrizable space is paracompact.

Theorem 1.2 (Urysohn Metrization Theorem ([Mun75], Theorem 34.1)).
Every regular and second-countable topological space is metrizable.

Theorem 1.3 (Smirnov Metrization Theorem ([Mun75], Theorem 42.1)).
A topological space M is metrizable if and only if it is Hausdorff, paracom-
pact, and locally-metrizable.

The following diagram provides a rough summary of the relationships among
these topological properties. An arrow from one property to another indi-
cates that the former implies the latter.

second countable
+ regular // metrizable

��

// paracompact

normal // regular // Hausdorff

We are now ready to define a C0 (or topological) manifold.

Definition 1.4. A topological manifold or C0 manifold M is a topo-
logical space that is both Hausdorff and second-countable, and satisfies the
following condition: for every point p ∈ M , there exists an open neighbor-
hood U ∋ p and a homeomorphism φ : U −→ V onto an open subset V ⊂A,
where A is a finite-dimensional real or complex vector space2.

A local homeomorphism φ : U → V as in Definition 1.4 is called a (local)
chart for M around the point p. If A = Rm or A = Cm and

φ(p) =
(
x1(p), . . . , xm(p)

)
∀ p ∈ U,

2The letter A stands for affine space.
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then the functions (xi)
m
i=1 are called the (real or complex) local coordi-

nates around p associated with the chart φ; see Figure 1.

φ

x1

x2

Figure 1. A chart on a torus.

Remark 1.5. (1) In many standard definitions of manifolds, one of-
ten sees A = Rm rather than an abstract vector space. However,
this restriction is not always necessary. The more general form of
Definition 1.4 allows for both real and complex charts. While every
finite-dimensional real (respectively, complex) vector space is iso-
morphic to Rn (respectively, Cn), such an identification depends on
a choice of basis. In many contexts, especially those lacking a pre-
ferred basis, the abstract formulation is more natural. Since linear
maps between vector spaces are smooth, this generality introduces
no complications when we later define smooth manifolds.

(2) Every chart map φ is a homeomorphism, and thus its inverse

φ−1 : V −→ U

carries the same amount of information. As a result, one can equiv-
alently define a chart as a homeomorphism from an open subset of
an affine space to an open subset of the manifold. In some sit-
uations, this latter perspective is more convenient. Throughout,
we will alternate freely between the two conventions and refer to
both φ : U → V and φ−1 : V → U as charts on M , without further
comment. We will adopt a similar approach when discussing local
trivializations of vector bundles in later sections.

The half-space

Hm =
{
(x1, x2, . . . , xm) : x1 ≥ 0

}
is not a manifold in the sense of Definition 1.4 along its boundary points:

∂Hm = {0} × Rm−1 ⊂ Rm.

A simple modification of Definition 1.4 allows us to define a manifold M
with boundary ∂M . We will mostly encounter manifolds with boundary
when discussing Stokes’ Theorem.



4 1. Continuous manifolds

Definition 1.6. A topological manifold (or C0 manifold)M , possibly with
boundary, is a topological space that is Hausdorff and second countable,
and satisfies the following condition: for every point p ∈M , there exists an
open neighborhood U ∋ p and a homeomorphism

φ : U −→ V

onto an open subset V ⊂ Hm.

Figure 2 illustrates a chat map around a boundary point.

x1

x2
φ

Figure 2. A boundary chart on a torus with boundary

Note that Definition 1.6 includes Definition 1.4 as a special case. Charts
whose image lies in Hm \ ∂Hm behave as before.

For all p ∈ M , the condition φ(p) ∈ ∂Hm is independent of the choice of
chart φ. We call the set of such points the boundary ofM and denote it by
∂M . The set ∂M is itself a topological (m− 1)-manifold without boundary.
In the upcoming statements, when we talk of a neighborhood of a boundary
point that is homeomorphic to a ball, we mean an open subset of the form

φ(U) = Br(0) ∩Hm

for some r > 0. By gluing two copies of M along ∂M via the identity map
on ∂M , we obtain a manifold without boundary. This construction can be
used to reduce certain statements about manifolds with boundary to the
case of manifolds without boundary.

It is natural to ask whether the integer m = dimRA in Definition 1.4 (or
Definition 1.6) can vary from chart to chart. Fortunately, the following
theorem of Brouwer shows that this is not the case: the integer m is a
topological invariant of any connected3 C0-manifold M . We refer to this
integer m as the (real) dimension of M , and say that M is an m-manifold.
Complex dimension of complex manifolds will be defined as half of its real
dimension.

3Thanks to the existence of local charts, every manifold is locally path-connected. As a result,

the notions of connectedness and path-connectedness coincide for manifolds; see [Mun75, Theo-
rem 25.5].
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Theorem 1.7 (Brouwer’s Invariance of Domain Theorem [Bro12]). Let
V ⊂ Rn be open, and let f : V −→Rn be an injective continuous map. Then
f(V ) is open in Rn and f is a homeomorphism between V and f(V ).

Exercise 1.8. Use this theorem to show that dimRA is independent of
the particular choice of chart on a connected manifold M . In other words,
charts on a connected C0-manifold must have model spaces of the same
(real) dimension.

The three conditions in Definition 1.4 are logically independent: there exist
examples of topological spaces that satisfy exactly two of the three condi-
tions, but not all three.

Example 1.9. (double origin line) We construct a topological space that is
second-countable and admits local charts, but is not Hausdorff. Let

M ..=
R× {±}

(x,+) ∼ (x,−) ∀x ∈ R−{0}

with the quotient topology. In other words, M is the topological space
obtained by identifying two copies of R along R−{0} via the identity map.
It has two “zero points”, denoted 0+ and 0−, which are the images of (0,+)
and (0,−) in the quotient space, respectively. Such non-Hausdorff spaces
are generally unsuitable for calculus.

Example 1.10. (long line) The so-called long line is a classical example
of a non-second-countable that is Hausdorff and admits local charts. It is
constructed by “stacking” uncountably many copies of the interval [0, 1) in a
well-ordered sequence indexed by the first uncountable ordinal ω1 Formally,
the long line is the topological space obtained by taking the ordered set
[0, 1) × ω1 with the lexicographic order and equipping it with the order
topology. The resulting space is locally homeomorphic to R, Hausdorff, and
connected, but it is not second-countable, and hence not a manifold in our
sense.

The second-countability condition has many important consequences. To
begin with, it follows from the Urysohn Metrization Theorem that every
manifold is metrizable. As a result, manifolds possess all the desirable topo-
logical properties listed in Definition 1.1. Additionally, many constructions
on manifolds proceed in two steps. First, one defines local objects – such as
functions, vector fields, or differential forms – on individual charts, where
one can apply standard tools from calculus on open subsets of Rm. Sec-
ond, one assembles these local pieces into a global structure on M . For
this second step to work, it is crucial that we can form either a locally fi-
nite or countable (and hence convergent) sum. The existence of a countable
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basis – and equivalently, the paracompactness ofM – ensures that such con-
structions are feasible. In particular, every manifold admits (c.f. [Mun75,
Theorem 41.7]) a partition of unity in the following general topological sense.

For any subset Y ⊂M , we denote the closure of Y in M by clM (Y ).

Definition 1.11. SupposeM is a topological space and U ..= {Uα}α∈I is an
open covering of M . A partition of unity subordinate to U is a collection
of continuous functions {

ϱα : Uα −→ [0, 1]
}
α∈I

satisfying the following properties:

(1) The support of each function, defined by

supp(ϱα) = clM

({
x∈Uα : ϱα(x) ̸= 0

})
is contained in Uα;

(2) The collection of closed sets
{
supp(ϱα)

}
α∈I is locally-finite4;

(3) The functions sum to one:∑
α∈I

ϱα ≡ 1.

Note that the point-wise sum in (3) is well-defined at every point x ∈ M
due to the local finiteness in (2).

Definition 1.12. A collection of charts

A =
{
φα : Uα −→ Vα

}
α∈I

on a topological space is called an atlas if the domains {Uα}α∈I form an
open cover of M .

Combining two of the defining properties of a manifold, we obtain the fol-
lowing equivalent characterization of a continuous manifold.

Lemma 1.13. A topological space M is a manifold if and only if it is
Hausdorff and admits a countable atlas.

Proof. Suppose M admits a countable atlas

A =
{
φn : Un −→ Vn

}∞
n=1

.

Each Un is second countable because it is homeomorphic to an open subset
of an affine space (or half of it). A countable union of second countable
spaces is second countable. Therefore, M is second countable.

4That is, for every x ∈ M , there exists a neighborhood U ∋x such that U ∩ supp(ϱα) ̸=∅ for only
finitely many α.
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Conversely, suppose M has a countable basis

B = {Un}∞n=1

and can be covered by charts. Let B′ ⊂ B be the subcollection of those open
sets Un that are the domain of some chart map φn : Un → Vn (and fix one
such φn for every such Un). We show that

A =
{
φn : Un → Vn : Un ∈ B′}

is an atlas. For every p ∈ M , take some chart φ : U → V such that p ∈ U .
By the definition of basis, there is n such that p ∈ Un ⊂ U . Therefore,
φ|Un : Un → φ(Un) is a chart. We conclude that Un ∈ B′ and

M =
⋃

Un∈B′

Un.

□

Exercise 1.14. Modifying Example 1.9, let

M ..=
R× {±}

(x,+) ∼ (x−1,−) ∀x ∈ R−{0}

with the quotient topology. Show that M is Hausdorff. Therefore, it is a
manifold (covered by two charts). Write a continuous map f : M −→ R2

which is a homeomorphism onto S1 ⊂ R2 (with the subspace topology).

Exercise 1.15. Let M = R/Z, where Z acts by translation,

n · x = x+ n, ∀ x ∈ R, n ∈ Z.

(a) Show that M is a topological manifold.
(b) Define an atlas on M using the natural projection R −→M .
(c) Write a continuous map f : M −→ R2 which is a homeomorphism onto
S1 ⊂ R2.

Exercise 1.16. Prove that every connected 1-dimensional manifold M is
homeomorphic to R or S1.

We conclude with a theorem that will be used in Section 5 to show that the
universal cover of any manifold is also a manifold.

Theorem 1.17. The fundamental group of any connected manifold M is
countable.

Proof. Fix a countable atlas

A =
{
φn : Un −→ Vn

}∞
n=1
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on M such that each Vn is an open ball (in particular, simply connected).
For any n, n′, the intersection Un ∩ Un′ has at most countably many con-
nected components (since each component contains a point with rational
coordinates).

Let S be a set containing one point from each such connected component
for all n, n′. For every pair x, y ∈ S and n such that x, y ∈ Un, fix a path
from x to y lying entirely in Un. Let E be the (countable) set of all such
paths.

Choose a base point x0 ∈ S. Any loop in M based at x0 is homotopic to
a finite concatenation of paths from E. Since the set of finite sequences
from a countable set is itself countable, it follows that π1(M) is at most
countable. □
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Solutions to exercises

Exercise 1.8. Suppose φ : U → V ⊂ Rn and φ′ : U ′ → V ′ ⊂ Rm are two
overlapping charts (i.e., U ∩ U ′ ̸= ∅) on a topological manifold M , with
m ≤ n. Consider the map

ι ◦ φ′ ◦ φ−1 : φ(U ∩ U ′) −→ ι ◦ φ′(U ∩ U ′) ⊂ Rn,

where ι : Rm ↪→ Rn is the standard inclusion. By Brouwer’s Invariance
of Domain Theorem, this map is a homeomorphism onto its image. This
implies that m = n.

Since M is connected, any two charts can be joined by a finite chain of
overlapping charts. Therefore, all charts on M map into affine spaces of the
same fixed real dimension. □

Exercise 1.14. For x ∈ R, let x+ and x− denote the images of (x,+) and
(x,−) in the quotient space M , respectively. Note that

x+ = (1/x)− for all x ̸= 0.

Let π : R × {±} → M denote the quotient projection. We leave it to the
reader to verify that π is an open map.

To show that M is Hausdorff:

• For any ϵ < 1, the points 0+ and 0− can be separated by the disjoint
open sets

π
(
(−ϵ, ϵ)× {+}

)
and π

(
(−ϵ, ϵ)× {−}

)
.

• For any x ̸= 0 and ϵ < |x|/2, the points 0± and x± can be separated
by disjoint open sets

π
(
(−ϵ, ϵ)× {±}

)
and π

(
(x− ϵ, x+ ϵ)× {±}

)
.

Because π is open, the maps

φ+ : R →M, φ±(x) = x±,

define charts on M , giving a two-chart atlas (using the viewpoint of Re-
mark 1.5.2). By Lemma 1.13, M is a manifold.

There are many ways to define a topological embedding f : M −→ R2. One
particular choice that will be generalized to spheres of all dimension in the
next lecture comes from inverse stereographic projections

f : M → S1 ⊂ R2, x± →
(

2x

x2 + 1
,±x

2 − 1

x2 + 1

)
.

Check the following:

• f(x+) = f((1/x)−), so the chart-wise defined map respects the
equivalence relation and is well-defined globally on M ;
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• f is bijective onto S1 ..= {(x, y) ∈ R2 : x2 + y2 = 1};
• f is continuous and hence a homeomorphism onto its image.

□

Exercise 1.15. Similarly to the previous exercise, we leave it to the reader
to verify that the quotient projection π : R →M is an open map. For every
p, q ∈M with p ̸= q, there exist distinct x, y ∈ [0, 1) such that π(x) = p and
π(y) = q. Without loss of generality, assume x < y. Let

ϵ = min
(
(y − x)/2, (1 + x− y)/2

)
.

Verify that

π
(
(x− ϵ, x+ ϵ)

)
and π

(
(y − ϵ, y + ϵ)

)
are disjoint open sets containing p and q, respectively. Therefore, M is
Hausdorff. For every x ∈ R and ϵ < 1/2, the map

(x− ϵ, x+ ϵ) →M, y 7→ π(y),

is a chart. The collection of these charts covers the entire M . Furthermore,
by choosing x, ϵ ∈ Q we obtain a countable atlas. We conclude that M is a
manifold. The map

f : M −→ C = R2, π(x) 7→ e2πix ∀x ∈ R,

is well-defined and is a homeomorphism onto the unit circle S1 ⊂ C. □

Exercise 1.16. By the existence of charts and since (a, b) ∼=C0 R, every
point p ∈M has a connected neighborhood U homeomorphic to R. Inclusion
defines a partial order on such neighborhoods. By the Axiom of Choice, let
U be a maximal such neighborhood and fix a chart map

φ : U → R.

If U =M , thenM ∼= R. Otherwise, sinceM is connected, we have clM (U) ̸=
U . Suppose p ∈ clM (U) \ U .

Let ψ : U ′ → (−1, 1) be a chart map defined on an open neighborhood
U ′ of p sending p to 0. Since p ∈ clM (U) \ U , for every ϵ > 0, the set
U ′
ϵ = ψ−1((−ϵ, ϵ)) has non-empty intersection with U . Suppose

ψ(U ′
ϵ ∩ U) =

∐
i∈I

Ii,

where each Ii = (ai, bi) is an interval. If |I| > 2, then there exists an interval,
say I0, such that a0 > −ϵ and b0 < ϵ. Therefore,

q = ψ−1(a0), q
′ = ψ−1(b0) ∈ U ′

ϵ ⊂ U ′.
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For sufficiently small ϵ, the image φ(ψ−1(I0)) ⊂ R is an interval strictly
contained in R. Taking closure and using Hausdorfness, we conclude that one
of q or q′ belongs to U , which contradicts the assumption that q, q′ /∈ U ∩U ′

ϵ.

Therefore, we can assume |I| = 1 or |I| = 2. Furthermore, by the argument
above, if |I| = 1, then

ψ(Vϵ ∩ U) = (−ϵ, b) or (a, ϵ)

for some b < 0 or a > 0. Similarly, if |I| = 2, then

ψ(U ′
ϵ ∩ U) = (−ϵ, b) ∪ (a, ϵ)

for some b < 0 and a > 0. The condition p ∈ clM (U) \ U then forces a= 0
and b=0.

• In the first case, i.e., when |I| = 1, it is relatively easy to show
that there exists a chart with domain U ∪U ′

ϵ, which contradicts the
maximality of U .

• In the second case, i.e., when |I| = 2, it is relatively easy to show
that U ∪ U ′

ϵ
∼= S1. Since S1 is connected, it must be the entire M .

□





Chapter 2

Spheres and projective
spaces

Before we proceed further, we discuss the examples of spheres and real/complex
projective spaces, which play an important role in the study of manifolds
and more general topological spaces. We will describe explicit atlases for
these manifolds and use them in future calculations.

Spheres.

For m ≥ 0, the (unit) m-sphere Sm is defined to be the following subspace
of Rm+1:

Sm =
{
(x0, . . . , xm) :

m∑
i=0

x2i = 1
}

In general, we have the following lemma about subspaces of Euclidean space
or any other manifold.

Definition 2.1. Suppose M is a C0 manifold (without boundary) and Y ⊂
M is a subset, with subspace topology. We say Y is locally graph-like if
for every p ∈ Y , there is an open neighborhood M ⊃ U ∋ p and a chart
map φ : U → V1 × V2 ⊂ A = A′ × A′′ such that φ(Y ∩ U) is the graph of a
continuous map f : V1 → V2. In other words,

(2.1) φ(q) = (φ1(q), φ2(q)) =
(
φ1(q), f(φ1(q))

)
∀ q ∈ Y ∩ U.

Lemma 2.2. Suppose M is a C0 manifold (without boundary) and Y ⊂
M is a locally graph-like subset with subspace topology. Then Y is a C0

manifold.

13



14 2. Spheres and projective spaces

Proof. The subspace topology on Y is automatically Hausdorff and second
countable. Thus, it remains to construct an atlas. For any p ∈ Y , consider
a chart map φ : U → V1 × V2 ⊂ A = A′ × A′′ as in Definition 2.1. We will
show that

φ1 : UY
..= U ∩ Y → V1 ⊂ A1

is a homeomorphism onto its image. By Definition 1.4, the map φ : U −→
V1 × V2 is a homeomorphism. Therefore, φ1 is continuous and surjective.
Moreover, by equation (2.1), it is also injective. It remains to show that
φ−1
1 : V1 → UY is continuous, i.e., that φ1 is an open map. Since φ is a

homeomorphism, the sets of the form φ−1(B1 × B2), with Bi ⊂ Vi open,
form a basis for the topology on U . Furthermore,

φ1

(
Y ∩ φ−1(B1 ×B2)

)
= f−1(B2) ⊂ V1.

Since f is continuous, f−1(B2) is open in V1. We conclude that φ1 : UY → V1
is an open map. □

Corollary 2.3. For m ≥ 0, Sm is a manifold of dimension m.

Proof. For each i ∈ {0, . . . ,m}, let

Ũ±
i =

{
(x0, . . . , xm) :

∑
j ̸=i

x2j < 1, ±xi > 0
}
∼= Bm

1 (0)× R+

where Bm
1 (0) is the open ball of radius one around the origin in Rm. Since

Y ∩ Ũ±
i is the graph of

xi = ±
(
1−

∑
j ̸=i

x2j

)1/2
,

Lemma 2.2 shows that Sm is a manifold (of dimension m). Let

U±
i

..= Ũ±
i ∩Sm and Vi =

{
(xj)j∈{0,...,̂i,...,m} :

∑
j ̸=i

x2j < 1
}
∼= Bm

1 (0) ⊂ Rm.

Since the collection {Ũ±
i } covers the entire Rm+1, we conclude that the

collection of projection maps

(2.2) A =
{
φi,± : U±

i −→ Vi, (x0, . . . , xm) → (xj)j ̸=i

}
(i,±), i=0,...,m

defines an atlas on Sm. □

Next, generalizing the construction from the solution to Exercise 1.14, we
define a different atlas on Sm consisting of only two charts.

Let
p± = (±1, 0, . . . , 0) ∈ Sm.

Projection maps φ± from p± onto the hyperplane

A = (x0 = 0) ∼= Rm ⊂ Rm+1
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define homeomorphisms

φ± : U± ..= Sm \ {p±} → A, φ±(x0, x1, . . . , xm) =
1

1∓ x0
(x1, . . . , xm);

see Figure 1.

x2

x0

x1

p+ = (1, 0, 0)

p

φ+(p)

Figure 1. Stereographic projection φ+ from the north pole p+ =
(1, 0, 0) onto the xy-plane

The atlas

(2.3) A = {φ± : U± → Rm}

provides an efficient covering of the sphere and will be useful in many compu-
tations later. It is also important from the perspective of classical geometry,
as it gives a concrete realization of Sm as the one-point compactification of
Rm.

Exercise 2.4. Consider

(2.4) M ..=
{
(x, y, z) ∈ R3 : x3 + y3 + z3 = 1

}
⊂ R3

equipped with the subspace topology. Describe an atlas on M to conclude
that it is a C0 2-manifold. Is M connected?

Real and complex projective spaces.

Definition 2.5. Let A be a vector space over the field F = R or F = C. The
projective space P(A) is the set of 1-dimensional1 subspaces (called lines)
ℓ ⊂ A.

1When working over R, this means real dimension; when working over C, this means complex
dimension.
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Note that every line ℓ ⊂ A is of the form F ·v for some vector v ∈ A, and two
nonzero vectors v, v′ ∈ A \ {0} generate the same line if and only if v′ = λv
for some λ ∈ F∗ ..= F \ {0}. Therefore,

(2.5) P(A) =
A \ {0}

F∗ ,

where F∗ acts onA by scalar multiplication. AssumingA is finite-dimensional,
the quotient description (2.5) allows us to topologize the set P(A) using the
quotient topology: if

(2.6) π : A \ {0} → P(A)

denotes the projection map, then a subset U ⊂ P(A) is open if and only if
its pre-image π−1(U) is open.

Exercise 2.6. If A′ ⊂ A is a linear subspace, then P(A′) ⊂ P(A) is a closed
subset.

In the following, we assume A is finite-dimensional.

Lemma 2.7. If V ⊂ A is a codimension-one linear subspace, then UV
..=

P(A)\P(V ) is an open subset homeomorphic to V . Furthermore, any vector
v ∈ A \ V determines a homeomorphism (i.e., a chart map)

φ(V,v) : UV → V.

Remark 2.8. The statement of Lemma 2.7 highlights the value of defining
chart maps in Definition 1.4 to take values in an abstract vector space. If V is
n-dimensional then V ∼= Fn; however, these identifications are not canonical
and require a choice of basis (as we will do in the calculations below).

Proof of Lemma 2.7. By Exercise 2.6, UV ⊂ P(A) is open. The points in
UV correspond to lines ℓ ⊂ A which are not included in V . Every such line
is of the form

ℓ = F · (v ⊕ w)

for some unique element w = w(ℓ) ∈ V ; see Figure 2. We leave it to the
reader to show that the one-to-one and surjective map

φ(V,v) : UV → V, ℓ −→ w(ℓ)

is indeed a homeomorphism. Note that φ(V,v) maps the line F·v to 0 ∈ V . □

Exercise 2.9. For v, v′ ∈ A \ V , find the relation between

φ(V,v) : UV → V and φ(V,v′) : UV → V.

Lemma 2.10. For every finite-dimensional vector space A over F = R or
C, the projective space P(A) is a manifold of dimension dimFA − 1. Here,
the dimension is understood as real dimension when F = R and as complex
dimension when F = C.
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v⃗

V

ℓ

0
w⃗

Figure 2. Chart maps φ(V,v), sending ℓ to w.

Proof. It is clear that the collection

(2.7) A =
{
φ(V,v) : UV → V

}
V⊂A, codimAV=1, v /∈V

defines an atlas. Identifying A ∼= Fn, let

Vi = {(x1, . . . , xn) ∈ Fn : xi = 0} ,
and let vi = ei be the i-th standard basis vector. Then, it is straightforward
to verify that

Astd =
{
φi

..= φ(Vi,ei) : Ui
..= UVi → Vi

}n
i=1

is a finite subatlas of (2.10).

It remains to verify that P(A) is Hausdorff. For any two distinct lines
ℓ, ℓ′ ∈ P(A), choose a hyperplane V ⊂ A such that ℓ, ℓ′ ̸⊂ V . Then both ℓ
and ℓ′ lie in the open set UV , which is homeomorphic to a Euclidean space.
Hence, they can be separated by disjoint open subsets. □

For A = Rn+1 and A = Cn+1 (i.e., when A is identified with Fn+1), the
projective spaces P(A) are denoted by RPn and CPn, respectively. In this
case, the equivalence class of a nonzero vector (X0, . . . , Xn) ∈ Fn+1 in

FPn =
Fn+1 \ {0}

F∗

is written as [X0 : . . . : Xn]. The variables (X0, . . . , Xn) are called projec-
tive coordinates, but they are not functions or coordinates on FPn in the
usual sense. However, statements such as Xi = 0 or Xi ̸= 0 are meaningful.

As explained in the proof of Lemma 2.10, the spaces RPn and CPn can be
covered by (n+ 1) standard charts:
(2.8)

φi : Ui → Vi, φi

(
[X0 : . . . : Xn]

)
=

(
xj =

Xj

Xi

)
j ̸=i

, for i = 0, . . . , n,

where Ui is the open subset defined by Xi ̸= 0 and Vi = F{0,...,̂i,...,n} ∼= Fn.
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Exercise 2.11. Prove that

(1) RP0 = CP0 = one point.

(2) RP1 is homeomorphic to S1.

(3) CP1 is homeomorphic to S2.

(4) π1(RPn) = Z2 for all n ≥ 2.

(5) CPn is simply-connected for all n ≥ 0.

Exercise 2.12. Given a vector space A, let Grk(A) denote the set of k-
dimensional subspaces of A. This is called the Grassmann manifold.
When A is identified with Rn or Cn, and the underlying field is clear from
context, one usually writes Gr(k, n) instead of Grk(A). Generalizing the con-
struction of projective space (i.e. k = 1), show that Grk(A) is a topological
manifold, Gr(k, n) can be covered by

(
n
k

)
charts, and

dimGr(k, n) = k(n− k).
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Solutions to exercises

Exercise 2.4. Clearly, M is the graph of the continuous function

f(x, y) = 3
√

1− x3 − y3

defined on all of R2. Therefore, the projection map

M −→ R2, (x, y, z) 7→ (x, y),

serves as a global chart for M . We conclude that M is a manifold homeo-
morphic to R2, and hence it is connected. □

Exercise 2.6. Pre-image of P(A) \ P(A′) in A \ {0} under the projection
map (2.6) is A−A′, which is open because A′ ⊂ A is a closed subset. □

Exercise 2.9. Suppose v′ = λv ⊕ w0 for some w0 ∈ V and λ ̸= 0. For any
ℓ ∈ UV , if

ℓ = F · (v′ ⊕ w), with w ∈ V,

then

ℓ = F · (λv ⊕ (w + w0)) = F · (v ⊕ λ−1(w + w0)).

We conclude that

φ(V,v′)(ℓ) = λφ(V,v)(ℓ)− w0,

i.e., φ(V,v′) is obtained from φ(V,v) by composing with a scaling and transla-
tion on V . □

Exercise 2.11. (1) If A is one-dimensional, then P(A) consists of a single
line.

(2) and (4): Every real line in Rn+1 is generated by a unit vector v ∈ Sn.
Furthermore, two unit vectors v, v′ ∈ Sn generate the same line if and only
if v′ = ±v. We conclude that

RPn =
Sn

Z2
,

which yields the same quotient topology as before. For n = 1, the map

S1

Z2
−→ S1, [eiθ] 7→ e2iθ

is the desired homeomorphism. Here, [eiθ] denotes the equivalence class of
eiθ ∈ S1 ⊂ R2 ∼= C under the quotient. For n ≥ 2, since Sn is simply-
connected, the projection map

Sn → RPn
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is a covering map with deck transformation group Z2. We conclude that
π1(RPn) = Z2.

(3) To prove that CP1 is homeomorphic to S2, we compare the standard two-
chart covering of CP1 in (2.8) with the two-chart covering of S2 in (2.3). For
n = 1, (2.8) shows that CP1 can be covered by two charts

(2.9) φi : Ui → Vi = C, i = 0, 1,

with the following properties:

• φ0(U0 ∩ U1) = φ1(U0 ∩ U1) = C∗;

• the so-called transition map φ1 ◦ φ−1
0 : C∗ → C∗ is given by z 7→

z−1.

Similarly, for n = 1, (2.3) shows that S2 can be covered by two charts

φ± : U± → V± = R2,

with the following properties:

• φ+(U+ ∩ U−) = φ−(U+ ∩ U−) = R2 \ {0};
• the transition map φ− ◦ φ−1

+ : R2 \ {0} → R2 \ {0} is

(x1, x2) 7→
1

x21 + x22
(x1, x2).

Identifying R2 with C via z = x1 + ix2, we find that φ− ◦ φ−1
+ (z) = z−1.

Define the maps

f+7→0 : U+ → U0, f+7→0(φ
−1
+ (x1, x2)) = [1 : x1 + ix2],

f−7→1 : U− → U1, f−7→1(φ
−1
− (x1, x2)) = [x1 − ix2 : 1].

The calculations above show that

f+ 7→0|U+∩U− = f−7→1|U+∩U− .

Therefore, these maps patch together to define a well-defined map

f : S2 → CP1.

It is straightforward to verify that f is a homeomorphism. In Section 4, we
will generalize and further explain the idea behind this construction.

(5) The complement of any chart Ui
∼= Cn in (2.8), say U0, is CPn−1. Since

CPn−1 ⊂ CPn has real codimension 2, any loop γ ⊂ CPn can be deformed
to avoid CPn−1; that is, γ is homotopic to a loop entirely contained in U0.
As U0 is simply-connected, it follows that CPn is simply-connected. □
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Exercise 2.12. Similarly to Lemma 2.7, if V ⊂ A is a codimension k linear
subspace, then

UV
..=
{
W ∈ Grk(A) :W ∩ V = {0}

}
is an open subset. Suppose v1, . . . , vk ∈ A are k linearly independent vectors
such that

A = V + ⟨v1, . . . , vk⟩ .
Since codimAV = k, this is a direct sum decomposition. Such a collection
of k vectors determines a homeomorphism (i.e., a chart map)

φ(V,v1,...,vk) : UV → V k

in the following way. The points in UV correspond to k-dimensional subspace
W ⊂A satisfying A = V +W . Every such W is the graph of a linear map

h : ⟨v1, . . . , vk⟩ → V.

Let wi = h(vi) for all i = 1, . . . , k. We leave it to the reader to show that
the one-to-one and surjective map

φ(V,v1,...,vk) : UV → V k, W −→ (w1, . . . , wk)

is indeed a homeomorphism.

It is clear that the collection

(2.10) A =
{
φ(V,v1,...,vk) : UV → V k

}
defines an atlas on Grk(A).

Identifying A ∼= Fn, for every 1 ≤ i1 < . . . < ik ≤ n, let

Vi1,...,ik =
{
(x1, . . . , xn) ∈ Fn : xia = 0 ∀ a = 1, . . . , k

}
,

and let va = eia be the ia-th standard basis vector. Then it is straightforward
to verify that
(2.11)

Astd =
{
φi1,...,ik

..= φ(Vi1,...,ik
,ei1 ,...,eik )

: Ui1,...,ik
..= UVi1,...,ik

→ V k
i1,...,ik

}
is a subatlas of (2.10) consisting of

(
n
k

)
charts, and

dimGr(k, n) = k dim(V ) = k × (n− k).

It remains to verify that Grk(A) is Hausdorff. For any two distinct elements
W,W ′ ∈ P(A), there is a codimension k subspace V such that W ∩ V =
W ′ ∩ V = {0}. Then both W and W ′′ lie in the open set UV , which
is homeomorphic to a Euclidean space. Hence, they can be separated by
disjoint open subsets. □.





Chapter 3

Smooth and
holomorphic manifolds

We will not be able to do calculus on C0 manifolds without placing ad-
ditional structure on them. For instance, extra assumptions are needed to
differentiate functions and thereby extend the notion of derivatives from cal-
culus to manifolds. More precisely, suppose M is a topological m-manifold
and f : M → R is a continuous function. Fix a chart

φ : U → V ⊂ Rm

on M . Then the composition

f ◦ φ−1 : V → R

is a function defined on an open subset of Rm, where the standard notion of
derivatives (e.g., partial derivatives) applies. In particular, we would like to
call f a smooth (i.e., C∞) function if f ◦φ−1 is smooth. Similarly, if m = 2k
and we identify R2k with Ck, we would like to call f : M → C holomorphic
if f ◦ φ−1 is holomorphic.

However, this notion of smoothness or holomorphicity depends on the choice
of chart in the following way. Suppose ψ : U ′ → V ′ is another chart such
that U ∩ U ′ ̸= ∅. Then, restricted to φ(U ∩ U ′) ⊂ Rm, we have

f ◦ φ−1 = (f ◦ ψ−1) ◦ (ψ ◦ φ−1),

where the transition map

ψ ◦ φ−1 : φ(U ∩ U ′) → ψ(U ∩ U ′)

is a homeomorphism between open subsets of Rm. If the transition map
ψ ◦ φ−1 is smooth with a smooth inverse, then the smoothness of f ◦ ψ−1

23
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and f◦φ−1 is equivalent on the overlap. Similarly, for f : M → C, if the tran-
sition map is holomorphic with a holomorphic inverse, then holomorphicity
is preserved across charts. The same conclusion holds for other regularity
conditions, such as being Ck, analytic, etc.

Definition 3.1. Suppose

A =
{
φα : Uα → Vα

}
α∈I

is an atlas for a topological manifold M . We say that A defines a Ck,
smooth, analytic, or holomorphic structure on M if the transition maps
(see Figure 1)

(3.1)
φα 7→β

..= φβ ◦ φ−1
α |Vα,β

: Vα,β → Vβ,α,

where Vα,β ..= φα(Uα ∩ Uβ), ∀ α, β ∈ I,

are Ck, smooth, analytic, or holomorphic, respectively.

φα

φβ

φα 7→β

Figure 1. Transition maps.

Suppose A and B are two smooth atlases on a manifold M . If the transition
maps between every chart in A and every chart in B are smooth, then the
union A∪B is a larger atlas that defines the same smooth structure on M .
In this case, we write A ∼ B. Otherwise, A and B define different smooth
structures on the same topological manifold M . A similar notion applies for
Ck, analytic, and holomorphic structures on M . It is easy to verify that the
relation ∼ defines an equivalence relation on the set of atlases.

Definition 3.2. A smooth, Ck, analytic, or holomorphic structure on a
topological manifold M is an equivalence class [A] of atlases such that each
atlas in the class defines a smooth, Ck, analytic, or holomorphic structure
on M , respectively.

Every smooth, Ck, analytic, or holomorphic structure on M has a unique
maximal atlas representing it.

Example 3.3. It is straightforward to verify that if M and N are Ck,
smooth, analytic, or holomorphic manifolds, then the product manifoldM×
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N , equipped with the product atlas, is also a manifold of the same regularity.
For instance, since S1 is smooth, the k-dimensional tori T k ..= (S1)k are all
smooth manifolds as well.

Remark 3.4. IfM is a smooth manifold with boundary, then ∂M naturally
inherits a smooth structure from M . The analogous statement does not
make sense in the holomorphic category due to dimensional constraints.

Exercise 3.5. Show that the atlases on Sm and RPm defined in Section 2
determine smooth structures. Show that the atlas defined on CPm deter-
mines a holomorphic structure on CPm. Show that the two different atlases
on Sm constructed in Section 2 are equivalent, and thus define the same
smooth structure.

Having defined smooth and holomorphic manifolds, we can now introduce
maps between them that satisfy appropriate regularity conditions. These
include smooth maps, holomorphic maps, and other variants depending on
the chosen structure.

Definition 3.6. SupposeM andM ′ are smooth (respectively, holomorphic)
manifolds, and let f : M → M ′ be a continuous map. We say that f is
smooth (respectively, holomorphic) if for every pair of charts φ : U → V
on M and φ′ : U ′ → V ′ on M ′ from the corresponding maximal atlases, the
composition

(3.2) φ′ ◦ f ◦ φ−1 : φ(f−1(U ′)) → V ′

is a smooth (respectively, holomorphic) map between open subsets of two
affine spaces.

In particular, we define:

• A diffeomorphism as a homeomorphism f : M → M ′ such that
both f and f−1 are smooth.

• A biholomorphism as a homeomorphism f : M → M ′ such that
both f and f−1 are holomorphic.

Note that to check whether a map f : M → M ′ is smooth (respectively,
holomorphic) near a point p ∈ M , it is sufficient to verify the smoothness
(respectively, holomorphicity) of the composition in (3.2) for a single chart
φ : U → V around p and a single chart φ′ : U ′ → V ′ around f(p). If we re-

place φ : U → V with another chart φ̃ : Ũ → Ṽ around p, the corresponding
composition becomes

φ′ ◦ f ◦ φ̃−1 =
(
φ′ ◦ f ◦ φ−1

)
◦
(
φ ◦ φ̃−1

)
.

Since the transition map φ ◦ φ̃−1 is smooth (respectively, holomorphic) by
assumption, the smoothness (respectively, holomorphicity) of φ′ ◦ f ◦ φ−1
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and φ′ ◦ f ◦ φ̃−1 are equivalent. The same argument applies when changing
the chart on the target manifold M ′.

Exercise 3.7. Let f : M −→ N be a continuos map between smooth mani-
folds. Show that f is a smooth map if and only if for every smooth function
h : N −→ R, the composition function h ◦ f : M −→ R is also smooth.

Exercise 3.8. Let f : R → R be a smooth and everywhere positive function.
Consider the graph y = f(x) of this function in xy-plane. By revolving
this graph in the xyz-space around the x-axis, we obtain M , a “surface of
revolution”. Consider the following four charts (U±

y , φy,±), (U
±
z , φz,±) for

M :

U±
y =M ∩ {±y > 0}, U±

z =M ∩ {±z > 0},

with φy,± : U±
y −→ V ±

y ⊂ R2 defined to be the projection to xz-plane and

φz,± : U±
z −→V ±

z ⊂ R2 defined to be the projection to xy-plane. Show that
the charts above define a smooth atlas for M such that M is diffeomorphic
to a cylinder (i.e. S1 × R).

Exercise 3.9. For a, b, c, d ∈ C, with ad − bc ̸= 0, show that any so called
Möbius function

f(z) =
az + b

cz + d
: C \ {−d/c} −→ C

extends to a holomorphic automorphism (i.e. a biholomorphism from a
space to itself) of CP1.

Having discussed various notions of regularity for an atlas on a topological
manifold, it is natural and important to consider the following questions:

(1) Does every topological manifold admit at least one C1 structure?

(2) For r ≥ 1, given a maximal Cr atlas A on M and r < k ≤ ∞, does
there exist a subatlas B ⊂ A that defines a Ck structure on M? If
so, is it unique?

(3) Can a topological manifold admit more than one smooth structure
(possibly even infinitely many), up to conjugation by homeomor-
phisms of M?

Before we answer these questions, let us explain the meaning and necessaity
of “up to conjugation by homeomorphisms of M” in the last question.

Given a smooth atlas A =
{
φα : Uα → Vα

}
α∈I onM and a homeomorphism

f : M → M , we can construct a new atlas by pulling back the charts of A
along f :

A′ ..=
{
φ′
α = φα ◦ f : f−1(Uα) → Vα

}
α∈I .
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If f is not differentiable, the atlas A′ will generally not be compatible with
A – that is, the transition maps between charts in A and those in A′ may fail
to be smooth. Nevertheless, the homeomorphism f defines a diffeomorphism
from the smooth manifold (M,A′) to the original smooth manifold (M,A)
in the sense of Definition 3.6. In this sense, the two smooth structures are
considered equivalent.

Example 3.10. The map f : R → R, defined by f(x) = xn for some odd
positive integer n, is a homeomorphism. Therefore,

A = {id : R → R} and A′ = {f : R → R}
are both single-chart atlases on R defining smooth structures (since there are
no transition maps to consider). WhileA ̸∼ A′, the map f : (R,A′) → (R,A)
is a diffeomorphism, identifying the two smooth structures.

The answer to the first question is no in dimensions greater than 3, and yes
in dimensions 1, 2, and 3. We will not delve into the long and rich history of
this question here, but we note that in dimensions five and higher, there is a
classification of smooth, piecewise-linear, and topological structures due to
Kirby and Siebenmann [KS77], formulated in terms of obstruction theory
and various invariants from algebraic topology. In contrast, the case of
dimension 4 is exceptionally intricate. It has been shown that there exist
uncountably many non-diffeomorphic smooth structures on R4 (this answers
question 3 positively), and to this day, a full classification of smooth 4-
manifolds remains out of reach.

The answer to the second question is fully positive. Every maximal Cr atlas
on a manifold M contains a unique maximal smooth subatlas. Moreover,
every maximal smooth atlas includes a unique maximal real-analytic sub-
atlas. This justifies our choice in this book to focus exclusively on smooth
and holomorphic manifolds.

We conclude this section with stating the following result on smooth parti-
tions of unity, whose proof is essentially identical to the continuous version.

Theorem 3.11. Given any smooth atlas A =
{
φα : Uα → Vα

}
α∈I on a

manifold M , there exists a smooth partition of unity subordinate to the open
cover {Uα}α∈I .

Remark 3.12. Holomorphic manifolds do not admit holomorphic partitions
of unity, since a holomorphic function that vanishes on a nonempty open
set must vanish identically. This rigidity is a hallmark of complex-analytic
geometry and is one reason why certain results in this book apply only to
smooth manifolds.
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Solutions to exercises

Exercise 3.5. For the atlas (2.2) on Sm, we have the following transition
maps:

• Since U+
i ∩ U−

i = ∅ for every i, there is no transition map.

• For i ̸= j and εi, εj ∈ {±}, we have

φi,εi(U
εi
i ∩ U εj

j ) = Vi ∩ {εjxj > 0},

φj,εj ◦ φi,εi

(
(xk)k ̸=i

)
=
(
(xk)k ̸=i,j , εi

(
1−

∑
k ̸=i

x2k
)1/2) ∈ Vj ∩ {εixi > 0},

which is clearly smooth on the open half disk Vi ∩ (xj > 0).

For the two-chart atlas (2.3) on Sm, the transition map φ−◦φ−1
+ : Rm\{0} →

Rm \ {0} and its inverse φ+ ◦ φ−1
− are both given by the same smooth

expression:

x = (x1, . . . , xm) 7→ 1

|x|2
x.

To show that the atlases (2.3) and (2.2) are equivalent, by symmetry in their
definitions, it suffices to check the transition maps between φ+ and φi,±. We
compute:

φ+ ◦ φ−1
0,+ : V0 \ {0} → Rm \ clRm(V0),

x = (x1, . . . , xm) 7→ 1

1−
√
1− |x|2

(x1, . . . , xm),

φ+ ◦ φ−1
0,− : V0 → V0, x = (x1, . . . , xm) 7→ 1

1 +
√
1− |x|2

(x1, . . . , xm).

For i ̸= 0 and ε = ±, we have:

φ+ ◦ φ−1
i,ε : Vi → Rm ∩ {εxi > 0},

(xj)j ̸=i 7→
1

1− x0

(
(xk)k ̸=0,i, ε

√
1−

∑
j ̸=i x

2
j

)
,

φi,ε ◦ φ−1
+ (x = (x1, . . . , xm)) =

1

1 + |x|2
(
|x|2 − 1, 2x1, . . . , 2̂xi, . . . , 2xm

)
.

In the first two lines above, the transition maps φ+◦φ−1
0,± are scalar multipli-

cations by positive smooth functions, so they and their inverses are smooth.
The third and fourth lines show that φ+ ◦φ−1

i,ε and their inverses are smooth

for all i ̸= 0. We conclude that (2.3) and (2.2) are equivalent and define the
same smooth structure on Sm.
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For both RPm and CPm, with notation as in (2.8), the transition maps
between charts are given as follows. For every 0 ≤ i, j ≤ m with i ̸= j,

φj ◦ φ−1
i

(
(xk)k ̸=i

)
= (yk)k ̸=j , where yk =

{
xk/xj if k ̸= i,

1/xj if k = i.

These maps are clearly smooth when the coordinates are real and holomor-
phic when the coordinates are complex. □

Exercise 3.7. It is straightforward to show that the composition of smooth
maps between smooth manifolds is smooth. In particular, if f : M → N
is smooth, then for every smooth function h : N → R, the composition
h ◦ f : M → R is also smooth.

For the converse, suppose that for every smooth function h : N → R, the
composition h ◦ f : M → R is smooth. That is, for every chart φ : U → V ⊂
Rm (or Hm) in the maximal smooth atlas ofM , the map h◦f ◦φ−1 : V → R
is smooth.

Let p ∈ M , and choose charts φ : U → V ⊂ Rm (or Hm) around p and

ψ : Ũ → Ṽ ⊂ Rn around f(p) such that f(U) ⊂ Ũ . Write ψ = (x1, . . . , xn),
where each xi is the i-th coordinate function of ψ.

Since smoothness is a local property, choose a compactly supported smooth

function ϱ : Ũ → R such that ϱ ≡ 1 on a neighborhood of ψ(f(p)). For each

i, define the function hi ..= ϱ ·xi, which is smooth on Ũ and extends trivially
to all of N . Moreover, hi = xi near f(p).

Therefore, on a sufficiently small neighborhood of p, the map ψ ◦ f ◦ φ−1

coincides with the smooth map(
h1 ◦ f ◦ φ−1, . . . , hn ◦ f ◦ φ−1

)
.

This shows that ψ ◦ f ◦ φ−1 is smooth near φ(p), and hence f is smooth at
p. Since p was arbitrary, f is smooth on all of M . □

Exercise 3.8. Note that U+
y ∩ U−

y = ∅ and U+
z = U−

z = ∅. For ε, ε′ ∈ {±},
the transition maps

φy,ε′ ◦ φ−1
z,ε(x, y) =

(
x, ε
√
f(x)2 − y2

)
,

φz,ε ◦ φ−1
y,ε′(x, z) =

(
x, ε′

√
f(x)2 − z2

)
,

are clearly smooth. Therefore, these charts define a smooth atlas for M .

It is easy to check that

f : R× S1 →M,
(
x, eiθ

)
7→
(
x, f(x) cos θ, f(x) sin θ

)
,

is injective and surjective. It remains to show that f and f−1 are smooth,
where the domain has the product smooth structure.
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Consider the 4-chart smooth atlas of S1 ⊂ R2 described in (2.2):{
φi,± : U±

i → Vi, (x0, x1) 7→ (xj)j ̸=i

}
(i,±), i=0,1

,

given by projecting the upper/lower and left/right halves to the x0- and
x1-axes. Taking the product with id: R → R yields a 4-chart smooth atlas
on R× S1.

In terms of coordinates (x, (x0, x1)), the map f is the restriction to R× S1

of the smooth automorphism

R3 → R3, (x, x0, x1) 7→
(
x, f(x)x0, f(x)x1

)
.

In later chapters we will see that this implies the restriction f is a diffeomor-
phism. However, the point of this exercise is to directly verify the condition
in Definition 3.6.

We compute:

φy,ε′ ◦ f ◦ (id× φ0,ε)
−1(x, x1) =

(
x, f(x)x1

)
, ∀x ∈ R, −1 < x1 < 1,

φz,ε′ ◦ f ◦ (id× φ0,ε)
−1(x, x1) =

(
x, εf(x)

√
1− x21

)
, ∀x ∈ R, 0 < ε′x1 < 1,

φy,ε′ ◦ f ◦ (id× φ1,ε)
−1(x, x0) =

(
x, εf(x)

√
1− x20

)
, ∀x ∈ R, 0 < ε′x0 < 1,

φz,ε′ ◦ f ◦ (id× φ1,ε)
−1(x, x0) =

(
x, f(x)x0

)
, ∀x ∈ R, −1 < x0 < 1.

The other cases are vacuous. Clearly, all these maps are smooth with smooth
inverses. □

Exercise 3.9. Recall from the solution to Exercise 2.11 that CP1 can be
covered by two charts

(3.3) φi : Ui → Vi = C, i = 0, 1,

with the following properties:

• φ0(U0 ∩ U1) = φ1(U0 ∩ U1) = C∗;

• the transition map φ1 ◦ φ−1
0 : C∗ → C∗ is given by z 7→ w = z−1,

where z is the coordinate on V0 and w is the coordinate on V1.

This shows that CP1 ∼= U0 ∪ {[0 : 1]} is a one-point compactification of
U0

∼= C. Since [0 : 1] corresponds to z = 1
0 = ∞, it is common to write

CP1 = C ∪ {∞}, allowing z to take values in C as well as ∞.

Under the chart map φ0 : U0 → C on both domain and target, the Möbius
transformation in Exercise 3.9 is the restriction to U0 \ {[c : −d]} of the
well-defined function

f : P1 → P1, [X0 : X1] 7→ [dX0 + cX1 : bX0 + aX1].
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In other words, under the chart φ0 : U0 → C, the function f is defined for
p ∈ CP1 \ {[c : −d], [0 : 1]}, and we extend f to the missing points by

f
(
[c : −d]

)
= [0 : 1] ∈ CP1 and f

(
[0 : 1]

)
= [c : a] ∈ CP1.

We must show that the resulting map is a holomorphic map between holo-
morphic manifolds.

Remark 3.13. More generally, any real or complex linear map f : A→ A′

between real or complex affine spaces induces a well-defined map

f : P(A) → P(A′),

since f maps lines to lines. The same principle applies to Grassmannians.
For instance, a Möbius transformation corresponds to an invertible linear
map

C2 −→ C2,

[
X1

X0

]
7→
[
a b
c d

] [
X1

X0

]
.

In the complex case, the claim is that f : P(A) → P(A′) is a holomorphic
map. In particular, if f : A → A is invertible, then f : P(A) → P(A) is a
holomorphic automorphism. We prove this general claim.

Identifying A with Cn+1, with coordinates (X0, . . . , Xn), and A
′ with Cm+1,

with coordinates (Y0, . . . , Ym), f has the form

f : Cn+1 −→ Cm+1,


X0

X1
...
Xn

 7→


Y0
Y1
...
Ym

 =

a10 · · · a1n
...

. . .
...

am0 · · · amn



X0

X1
...
Xn

 .
With notation as in (2.8), let φD

i : UD
i → V D

i denote the charts on the
domain for i = 0, . . . , n, and φT

j : UT
j → V T

j the charts on the target for
j = 0, . . . ,m. Then, for every i and j, we have

φT
j ◦ f ◦ (φD

i )
−1
(
(xk)k ̸=i

)
=
(
(ys)s ̸=j

)
, ys =

asi +
∑

k ̸=i askxk

aji +
∑

k ̸=i ajkxk
.

The right-hand side is a ratio of two linear functions in the variables xk.
Therefore, this expression defines a holomorphic function on an open subset
of V D

i . Changing the identifications A ∼= Cn+1 and A′ ∼= Cm+1 corre-
sponds to composing f with additional linear transformations represented
by invertible matrices. Since composition with holomorphic maps preserves
holomorphicity, the property of f : P(A) → P(A′) being holomorphic is in-
dependent of the chosen bases used in these calculations. □





Chapter 4

Manifolds as quilted
spaces

Definitions 1.4, 1.6, and 3.1 begin with a given topological space M and
require the existence of an atlas whose transition maps satisfy certain regu-
larity conditions.

However, in many situations the space M is not explicitly specified in ad-
vance. Instead, we construct it by gluing together countably many affine
open sets using transition maps that are homeomorphisms, diffeomorphisms,
or biholomorphisms. In this scenario, the resulting quotient space is, by
construction, locally modeled on affine charts and second-countable. What
remains is to verify that the space is Hausdorff in order to conclude that it
is a manifold.

In other words, we may think of M as a quilted quotient space formed by
gluing a countable collection of open subsets (or simpler manifolds) via a
prescribed class of transition maps. For many applications, this construction
is either necessary or significantly more efficient. In particular, this approach
eliminates the need to explicitly write chart maps and allows us to work
solely with the transition maps.

More precisely, let {Vα}α∈I be a countable collection of open subsets of Rm,
Hm, Cm, or some abstract real or complex vector space. For each pair of
indices α, β ∈ I, suppose there exist open subsets Vα,β ⊂ Vα and Vβ,α ⊂ Vβ
together with transition maps

Vα,β

φα7→β
,,
Vβ,α

φβ 7→α=φ−1
α7→β

ll ,
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which are, depending on the context, homeomorphisms, diffeomorphisms, or
biholomorphisms.

Assume further that:

(1) Vα,α = Vα for all α ∈ I, and φα 7→α = idVα ;

(2) For all α, β, γ ∈ I, we have

Vα,βγ = Vα,γβ ..= Vα,β ∩ Vα,γ = Vα,β ∩ φ−1
α 7→β(Vβ,γ);

this condition ensures that the domains and targets of both sides
of the cocycle condition below match;

(3) On Vα,βγ , the transition maps satisfy the (compatibility) cocycle
condition:

φα 7→γ = φβ 7→γ ◦ φα 7→β.

Under these assumptions, the identification

x ∼ y ⇔ x ∈ Vα,β, y ∈ Vβ,α, y = φα 7→β(x)

defines an equivalence relation on the disjoint union topological space M̃ =∐
α∈I Vα.

Let

(4.1) M ..= M̃/ ∼
denote the resulting quotient topological space.

Lemma 4.1. With notation as above, the space M is a (C0, smooth, or
holomorphic, depending on the type of transition maps) manifold if and only
if it is Hausdorff. Conversely, any countable atlas on a manifold presents it
as a quotient space of the form (4.1).

Proof. For each α ∈ I, let φα : Vα → M denote the composition of the

inclusion Vα ↪→ M̃ with the quotient projection map π : M̃ → M . The
collection

(4.2) A =
{
φα : Vα → Uα

..= π(Vα) ⊂M
}
α∈I

is a countable atlas (in the sense of Remark 1.5.2). By Lemma 1.13, M is a
manifold if and only if it is Hausdorff. The converse direction is immediate
from how the transition maps of an atlas are defined in Definition 3.1.

□

Example 4.2. Example 1.9 of the double origin line is a non-Hausdorff
instance of this construction, where

I = {±}, V+ = V− = R, V+,− = V−,+ = R∗, φ±→∓ = idR∗ .

In contrast, Exercise 1.14 constructs S1 by gluing the same collection of
open sets using the different transition map φ±→∓(x) = 1/x.
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As we mentioned earlier, we can consider a more general version of (4.1)
where each Vα is itself a manifold. In this case, it is also useful to relax the
first condition before (4.1) and allow Vα,α to be a proper subset of Vα. Then
φα 7→α should be an involution; i.e.,

φα 7→α ◦ φα7→α = id.

For instance, consider the following example with I = {1}, where
V1 = S1 × (0, 3), V1,1 = S1 ×

(
(0, 1) ∪ (2, 3)

)
,

and
φ17→1(p, t) = (p, 2 + t) ∀ (p, t) ∈ S1 × (0, 1).

Then the quotient manifold

M = V1/ ∼, (p, t) ∼ φ17→1(p, t),

is diffeomorphic to the 2-torus S1 × S1.

Such constructions are common in surgery theory of manifolds. For example,
it is well-known (e.g. see [Rol90, Ch. 9]) that any 3-manifold can be ob-
tained from S3 by surgery along a link (i.e., a disjoint union of knots). Such
a surgery removes a neighborhood of the link and glues it back differently
by modifying the transition map.

If two manifolds M and M ′ are presented as in (4.1) by

M =
∐
α∈I

Vα/ ∼, x ∼ y ⇔ x ∈ Vα,β, y ∈ Vβ,α, y = φα 7→β(x),

M ′ =
∐
α′∈I′

V ′
α′/ ∼, x ∼ y ⇔ x ∈ V ′

α′,β′ , y ∈ V ′
β′,α′ , y = φα′ 7→β′(x),

then a map f : M →M ′ corresponds to a collection of maps

fα 7→α′ : Vα;α′ ⊂ Vα −→ Vα′ ∀ α ∈ I, α′ ∈ I ′,

such that

φα′ 7→β′ ◦ fα 7→α′ = fβ 7→β′ ◦ φα 7→β ∀ α, β ∈ I, α′, β′ ∈ I ′,

on Vα;α′ ∩ Vα;β′ ∩ Vα,β. Here, Vα;α′ is the intersection of Vα and f−1(Vα′)
under the canonical chart maps in (4.2).





Chapter 5

Discrete quotients

In general, there are multiple ways to construct more complicated manifolds
from basic ones. These include:

(1) Taking products;

(2) Gluing several pieces along overlapping regions, as described in the
previous section;

(3) Taking quotients by group actions;

(4) Considering level sets of functions.

In this lecture, we study quotients by discrete group actions.

Suppose M is a (continuous, smooth, or holomorphic) manifold and G is a
discrete group (probably finite). By a (right-) action of G onM we mean
a function

ψ : M ×G −→M, (x, g) −→ x · g ..= ψ(x, g) ∈M

such that ψ(−, g) : M −→M is continuous, smooth, or holomorphic for all
g∈G, depending on the context, and

ψ(x, g1g2) = ψ(ψ(x, g1), g2) ∀ g1, g2 ∈ G, x ∈M,

ψ(x, 1) = x ∀ x ∈M.

In particular, each ψg
..= ψ(−, g) : M −→ M should be a homeomorphism,

diffeomorphism, or biholomorphism, depending on the context.

Let

M/ψ or M/G ..=M/ ∼, x ∼ y ⇔ y = x · g for some g ∈ G,

denote the quotient space with the quotient topology.

37
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Theorem 5.1. With notation as above, suppose G is a discrete group that
acts freely and properly on M in the following sense:

• freely: for every point x ∈ M the stabilizer subgroup Gx = {g ∈
G : x · g=x} is the trivial subgroup;

• properly: for every compact subset K⊂M , the subset GK = {g ∈
G : (K · g) ∩K ̸= ∅} is finite.

Then the smooth manifold structure on M induces a unique C0, smooth, or
holomorphic manifold structure on the quotient M/G such that

• the quotient projection map π : M → M/G is continuous, smooth,
or holomorphic, respectively;

• and f : M/G → N is continuous, smooth, or holomorphic, if and
only if f ◦ π is continuous, smooth, or holomorphic, respectively.

Remark 5.2. If G is finite, then the action is automatically proper. One
only needs to check that it is free. IfM is compact, then the action is proper
if and only if G is finite.

Remark 5.3. If x and y belong to the same orbit of the G-action, i.e.,
y = x ·g for some g ∈ G, then the isotropy groups Gx and Gy are conjugate:

Gy = g−1Gxg.

Example 5.4. Recall from the solution to Exercise 2.11 that RPm = Sm/Z2,
where Z2 acts by x 7→ −x on Sm ⊂ Rm+1.

Example 5.5. The action of Z2 on R2 by translations,

R2 × Z2 −→ R2, (x, y)× (m,n) 7→ (x+m, y + n),

is smooth, free, and proper. Taking the product of the space in Example 1.15
with itself, we see that the quotient manifold R2/Z2 is the 2-dimensional
torus S1 × S1.

In the holomorphic category, there are many holomorphically non-equivalent
ways to define an action of Z2 on C ∼= R2. For each τ in the upper half-
plane

(5.1) H = {τ ∈ C : Im(τ) > 0},

define an action of Z2 on C by

ψτ : C× Z2 −→ C, z × (m,n) 7→ z +m+ nτ.

Then, T2
τ

..= C/ψτ is a 2-torus with a holomorphic structure (called an
elliptic curve). Since R2 is the universal covering space of T2, every elliptic
curve is of the form T2

τ for some τ ∈ H. The following exercise characterizes
holomorphic structures on T2 up to isomorphism.
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Exercise 5.6. With notation as in Example 5.5, show that T2
τ is biholo-

morphic to T2
τ ′ if and only if

(5.2) τ ′ = A · τ ..=
aτ + b

cτ + d

for some

A =

[
a b
c d

]
∈ SL(2,Z) =

{
A ∈M2×2(Z) : det(A) = 1

}
.

Exercise 5.7. In Exercise 5.6, the formula (5.2) defines a left action of the
discrete group SL(2,Z) on H. This action clearly descends to an action of
PSL(2,Z) = SL(2,Z)/{±I}. Find the isotropy groups of various values of τ
to show that the quotient is not naturally a manifold. This quotient space
parametrizes elliptic curves.

Exercise 5.8. Reducing the group in Exercise 5.7, let

Γ2 ⊂ PSL(2,Z), Γ2 = {A ∈ PSL(2,Z) : A ≡ I2 mod 2} .

Show that the action of Γ2 on H is free. (The quotient H/Γ2 is a sphere
with three punctures.)

Exercise 5.9. Let p and q be coprime integers and consider the action of
Zp on S3 ⊂ R4 ∼= C2 by diffeomorphisms:

(z1, z2) 7→
(
e2πi/pz1, e

2πiq/pz2

)
.

Show that the action is free to conclude that the quotient space L(p, q) ..=
S3/Zp is a 3-dimensional smooth manifold (called the lens space). What
is the fundamental group of L(p, q)?

Exercise 5.10. Give an example of a free action that is not proper.

Proof of Theorem 5.1. It is easy to see that the quotient projection map
π is open. For every p ∈M , choose an open neighborhood U ∋ p such that
U is the domain of a chart φ : U −→ V in the maximal atlas. Pick a smaller
open set U ′ ⊂ U such that p ∈ U ′ and clM (U ′) is compact in U .

Since the action is proper, there are at most finitely many elements in G,
say g1, . . . , gk, such that ψgj (U

′) ∩ U ′ ̸= ∅. Moreover, since ψgj (p) ̸= p for
all j and M is Hausdorff, there exist open neighborhoods Uj of ψgj (p) and
U ′
j ⊂ U ′ of p such that

Uj ∩ U ′
j = ∅.

Let

U ′′ =

k⋂
j=1

ψ−1
gj (Uj) ∩

k⋂
j=1

U ′
j ⊂ U ′.
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It is straightforward to check that ψg(U
′′) ∩ U ′′ = ∅ for all g ∈ G \ {e} and

p ∈ U ′′. Therefore, every point p admits a chart φ′′ ..= φ|U ′′ : U ′′ → V ′′ =
φ(U ′′) such that

π : U ′′ → π(U ′′)

is a homeomorphism. Thus,

φ′′ ◦ π−1 : π(U ′′) → V ′′

is a chart around π(p) ∈ M/G. The set of such charts defines the induced
atlas on M/G.

ThatM/G is Hausdorff and second countable follows from the corresponding
properties of M , together with the fact established above that π is locally a
homeomorphism.

The transition maps between charts on M/G are compositions of the maps
ψg with the transition maps of charts on M . Therefore, if M is smooth and
G acts by diffeomorphisms, then the transition maps of the induced atlas
on M/G are smooth as well. Similarly, if M is holomorphic and G acts by
biholomorphisms, then the transition maps of the induced atlas onM/G are
holomorphic.

The two bullet-point properties follow directly from our definition of the
induced atlas on M/G. □

Every manifold M is the quotient of its universal cover M̃ by the group
of deck transformations. The following result can be viewed as a sort of
converse to Theorem 5.1 in this specific setting.

Theorem 5.11. The universal cover M̃ of any continuous, smooth, or holo-
morphic connected manifold is itself a continuous, smooth, or holomorphic

manifold, respectively, such that the covering map π : M̃ −→ M is the quo-
tient projection with respect to the action of π1(M) as the group of deck
transformations.

Proof. By Theorem 1.17, the fundamental group π1(M) is countable. Re-

call that, topologically, M̃ is the space of paths γ from a fixed base point
p0 ∈M to any point p ∈M , considered up to homotopy. That is, a point in

M̃ corresponds to the homotopy class [γ] of such a path, and the covering
map is defined by π([γ]) = p.

Let

A =
{
φn : Un −→ Vn

}
n∈N

be a countable atlas on M such that each Vn is a ball (and hence simply

connected). For each n, choose a point pn ∈ Un and fix a preimage p̃n ∈ M̃
such that π(p̃n) = pn.
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Then, π−1(Un) consists of open sets {Un,α}α∈π1(M) satisfying:

• Un,1 is the component containing p̃n,

• the restriction π : Un,α −→ Un is a homeomorphism for each α,

• Un,α = Un,1 · α under the right-action ψα : M̃ −→ M̃ of α,

• and Un,α ∩ Un,α′ = ∅ for α ̸= α′.

Therefore,

Ã =
{
φn ◦ π : Un,α −→ Vn

}
n∈N, α∈π1(M)

is a countable atlas on (the Hausdorff space) M̃ . It is straightforward to

check that the transition maps of Ã coincide with those ofA, and thus inherit
the same level of regularity (i.e., continuous, smooth, or holomorphic). □

Remark 5.12. For an arbitrary discrete group action as in Theorem 5.1,
the fundamental groups ofM andM/G are related by a short exact sequence
of groups:

1 −→ π1(M) −→ π1(M/G) −→ G −→ 1 .

In this case, the universal cover of M/G is the same as the universal cover
of M , and the group G can be identified with a quotient of π1(M/G) by the
normal subgroup π1(M).
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Solutions to exercises

Exercise 5.6. Suppose

f : T2
τ ′ −→ T2

τ

is a biholomorphism. Since C is the universal cover of both complex tori,
there is a canonical biholomorphic lift

f̃ : C −→ C

of f satisfying f̃(0) = 0 (recall that such a lift is unique once we specify
a pre-image of a base point). The map f induces a group isomorphism
π1(f) : Z2 −→ Z2 between the fundamental groups. Suppose

f(τ ′) = aτ + b, f(1) = cτ + d

for some a, b, c, d ∈ Z. Then,

f(mτ ′+n) = m(aτ+b)+n(cτ+d) = (ma+nc)τ+(mb+nd) ∀ m,n ∈ Z.

The only holomorphic functions f̃ : C −→ C with linear growth and f̃(0) = 0

are linear maps; that is, f̃(z) = λz for some λ ∈ C∗. This implies

τ ′ =
aτ + b

cτ + d
.

The same argument applies in the reverse direction, implying that

A =

[
a b
c d

]
is invertible. Therefore, det(A) = ±1. Since both τ and τ ′ lie in the upper
half-plane H, we conclude that det(A) = +1. The converse follows by
reversing the above steps.

Remark 5.13. Since T2
τ
∼= T2

1/τ , it suffices to consider parameters τ ∈ H.

Note that integer matrices A with det(A) = −1 send H to its complex
conjugate −H.

□

Exercise 5.7. Suppose

τ =
aτ + b

cτ + d
for some matrix

A =

[
a b
c d

]
∈ SL(2,Z).

Then τ is a root of the quadratic polynomial

cτ2 + (d− a)τ − b = 0,



Solutions to exercises 43

− 1
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1
2

|z| = 1
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Figure 1. Fundamental domain of the action of SL(2,Z) on H.

i.e.,

τ =
a− d±

√
a2 + d2 − 2ad+ 4bc

2c
=
a− d±

√
tr(A)2 − 4

2c
.

Since we care about the class of A in PSL(2,Z), we may assume tr(A) ≥ 0.
If tr(A) ≥ 2, then τ is real and does not lie in H. So suppose a + d < 2.
Since a and d are integers, we must have a+ d = 0 or a+ d = 1.

(1) Suppose d = −a: Then

τ =
a± i

c
, with − bc = 1 + a2.

Again, since we care about the class of A in PSL(2,Z), we may assume c > 0
and b < 0.

If a = 0, we get τ = i ∈ H and

Z2
∼= PSL(2,Z)i =

〈
S ..=

[
0 −1
1 0

]〉
.

Claim 5.14. If a ̸= 0, then τ = i+a
c ∈ H lies in the PSL(2,Z)-orbit of i.

Therefore, by Remark 5.3, its isotropy group is conjugate to that of i.

Proof. It is well known (e.g. see [Sil94, Ch. I]) that SL(2,Z) is generated
by

T =

[
1 1
0 1

]
and S =

[
0 −1
1 0

]
,

and every point inH lies in the orbit of a point in the fundamental domain

D =
{
τ ∈ H : −1

2 ≤ Re(τ) < 1
2 , |τ | ≥ 1

}
;

see Figure 1.

Since trace is invariant under conjugation, i+a
c is in the orbit of another

point i+a′

c′ with −1/2 ≤ a′

c′ < 1/2 and 1/c′ >
√
3/2. This forces c′ = 1 and

a′ = 0, which gives us i. □
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(2) Suppose a+ d = 1: Then

τ =
2a− 1±

√
3 i

2c
, with a2 − a+ 1 = −bc.

If a = 0 and c > 0, we get

τ = µ ..=
−1 +

√
3 i

2
∈ H

and

Z3
∼= PSL(2,Z)µ =

〈
A =

[
0 −1
1 1

]〉
.

Note that µ is a cubic root of 1.

Claim 5.15. For other values of a and c,

τ =
2a− 1 +

√
3 i

2c
∈ H

lies in the PSL(2,Z)-orbit of µ. Therefore, by Remark 5.3, its isotropy group
is conjugate to that of µ.

Proof. The proof is similar to the previous claim. □

□

Exercise 5.8. With notation as in the previous exercise, note that the
matrices S and A are not in Γ2. Therefore, the stabilizer of every point is
trivial, and the action is free. Since the action is also proper, the quotient
H/Γ2 is a smooth manifold of real dimension two.

A fundamental domain for the action of Γ2 consists of six copies of the stan-
dard fundamental domain for PSL(2,Z) (c.f. [SG69, p. 442]). By drawing
this domain and identifying the edges appropriately, one can show that the
quotient space is a sphere with three punctures. □

Exercise 5.9. By Remark 5.2, we only need to verify that the action is
free. Since p and q are coprime, both e2πi/p and e2πiq/p have order p. Thus,
since at least one of z1 or z2 is nonzero in S3, the action is free.

Since S3 is simply-connected, it follows from Remark 5.12 that π1(L(p, q)) ∼=
Zp. □

Exercise 5.10. The action of Z on S1 ⊂ C by

eiθ · n = ei(θ+nθ0),

where θ0/2π is irrational is free but not proper; see Remark 5.2. □



Chapter 6

Tangent bundle; part I

For any open subset V of a real or complex affine space A, and for every
point p ∈ V , the tangent space TpV = TpA consists of all possible directions
in which one can move starting from p. In other words, TpV is simply a
translated copy of the model vector space A, with the origin shifted to p
– a notion made precise by the linear structure of A. The union of these
tangent spaces forms the tangent bundle of V , which is simply the product
space

TV ..=
⊔
p∈V

TpV ∼= V ×A.

If γ : (−ε, ε) → V is a differentiable parametrized curve with γ(0) = p, then
the derivative

γ̇(0) = lim
t→0

γ(t)− γ(0)

t
∈ TpV ∼= A

is the tangent vector to γ at p.

Note that this expression makes sense because the linear structure on A
allows us to subtract points and rescale vectors. In this section, we gener-
alize these ideas to define the tangent bundle of smooth and holomorphic
manifolds – a key step in extending calculus to curved (i.e., non-flat) spaces.

Remark 6.1. If V ⊂ Hm is an open set, we define TV = V × Rm as
before. The tangent space at each point is still the full vector space Rm. At
boundary points, however, not every vector can be realized as the tangent
vector to a smooth path. This subtlety is typical for all manifolds with
boundary.

45



46 6. Tangent bundle; part I

Remark 6.2. On a complex vector space Cn, or an open subset thereof, a
complex curve is the image of a holomorphic map

γ : ∆ → Cn, γ(0) = p,

where ∆ ⊂ C is an open disk centered at 0 of some radius ε > 0. The
complex tangent vector to γ is defined by the same formula:

γ̇(0) = lim
z→0

γ(z)− γ(0)

z
∈ TpCn ∼= Cn.

When considered as real manifolds, holomorphic curves are examples of
Riemann surfaces.

There are at least two standard ways to define the tangent bundle of a
smooth or holomorphic manifold:

• The first is a coordinate-free approach that interprets tangent vec-
tors (and vector fields) as derivations – that is, as linear operators
acting on smooth (or holomorphic) functions.

• The second is a more concrete construction that builds the tangent
bundle by gluing together local data from charts, in the spirit of
Section 4.

The second approach is direct and well-suited for calculations. It is also
essential for proving that the tangent bundle naturally inherits a smooth or
holomorphic structure, depending on the context.

The first approach, though less computationally friendly, is equally impor-
tant, as it gives a global, intrinsic definition of the tangent bundle. It will
become especially valuable later, when we introduce the Lie derivative.

We begin with the second (chart-based) construction and then move on to
the operator-based approach in the next lecture, which will require a more
in-depth discussion.

Definition 6.3. Suppose

M ..=
∐
α∈I

Vα/ ∼

is a smooth or holomorphic manifold, as in (4.1), obtained by gluing affine
pieces {Vα ⊂ Aα}α∈I along overlap regions {Vα,β}α,β∈I via the identifica-
tions

x ∼ y ⇔ x ∈ Vα,β, y ∈ Vβ,α, y = φα 7→β(x).

Then the tangent bundle of M is defined as the quotient space

(6.1) TM ..=
∐
α∈I

(Vα ×Aα)/ ∼,



6. Tangent bundle; part I 47

obtained by gluing the pieces {TVα = Vα ×Aα}α∈I along their overlaps

{TVα,β = Vα,β ×Aα}α,β∈I
using the identifications

(x, v) ∼ (y, w) ⇔


(x, v) ∈ Vα,β ×Aα,

(y, w) ∈ Vβ,α ×Aβ,

y = φα 7→β(x),

w = Dxφα 7→β(v),

where dxφα 7→β ∈ Isom(Aα, Aβ) is the derivative of φα 7→β at x in the usual
calculus sense:

dxφα 7→β(v) = lim
t→0

φα 7→β(x+ tv)− φα 7→β(x)

t
.

When Aα = Rm, for all α ∈ I, the derivative dxφα 7→β ∈ GL(m,R) is simply
the Jacobian matrix of partial derivatives. Similarly, if Aα = Cm and φα 7→β

is holomorphic, then dxφα7→β ∈ GL(m,C) is the matrix of holomorphic
partial derivatives.

It follows directly from the construction that the local projection maps
πα : TVα → Vα are compatible on overlaps and glue to a global surjective
projection

π : TM →M.

Lemma 6.4. For any triple α, β, γ ∈ I, the following cocycle condition
holds on Vα,βγ ×Aα:

dφα7→γ = dφβ 7→γ ◦ dφα 7→β.

Moreover, the space TM is automatically Hausdorff. Therefore, depending
on the context, the quotient space TM in (6.1) is a smooth or holomorphic
manifold, and π is a smooth or holomorphic map onto M . For each point
p ∈M , the fiber

(6.2) TpM ..= π−1(p)

is called the tangent space to M at p; it is naturally a vector space and is
(non-canonically) isomorphic to Rm or Cm, depending on the context..

Proof. The cocycle condition on derivatives is simply the chain rule. For
every x ∈ Vα, the fiber π−1

α (x) = {x} × Aα is a vector space identified with
Aα. If x ∈ Vα is equivalent to y ∈ Vβ, then

dxφα 7→β : {x} ×Aα −→ {y} ×Aβ

is a linear isomorphism (because φα 7→β is a diffeomorphism). Hence, it
preserves the linear structure but not the specific identification with Aα. We
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conclude that the isomorphism classes TpM of the fibers in local pieces have
well-defined vector space structures. However, the particular identification
of each TpM with Rm or Cm depends on the choice of a basis.

For two distinct elements u, u′ ∈ TM , either π(u) ̸= π(u′), or they are
different vectors in the same tangent space TpM . In either case, since both
M and Aα are Hausdorff, they can clearly be separated by disjoint open
sets. □

Remark 6.5. There is a mild subtlety with Definition 6.3, as it a priori
depends on the choice of an atlas on M . Recall from Lemma 4.1 that
the quotient presentations (4.1) are in one-to-one correspondence with pairs
(M,A) consisting of a manifold and a countable atlas on it. However, it
is straightforward to show that the manifold TM associated to such a pair
(M,A) via (6.1) depends only on M .

Given two such atlases A and A′, we can construct a common refinement
by taking intersections of their domains. Therefore, it suffices to prove the
claim whenA′ is a refinement ofA, and every chart inA′ is either a sub-chart
of some chart in A, or disjoint from it. In this case, it is easy to construct an
isomorphism from the quotient space associated to A′ to the one associated
to A. We leave the details to the reader. Later in this chapter, we introduce
a coordinate-free definition of the tangent bundle and show that it agrees
with the construction above. This also confirms that TM is intrinsically
associated to the manifold M itself, independent of the atlas used.

Remark 6.6. In the construction of TM above, we started from a quilted
space interpretation of M as in (4.1) and similarly built TM by gluing local
pieces, each of which is the tangent space of an affine open subset. Given
a manifold M and an atlas A = {φ : Uα −→ Vα}, the tangent bundle TM
is still described as a quilted space obtained by gluing the local pieces TVα
along the overlaps using the transition functions φα 7→β = φβ ◦φ−1

α and their
derivatives. Therefore, in what follows, TUα should be understood either as
TVα or via the coordinate-free description in terms of derivations discussed
below.

Definition 6.7. A vector field on M is a section of the projection map
π : TM →M – that is, a map ξ : M → TM such that π ◦ ξ = idM . In other
words, ξ assigns to each point x ∈M a vector ξ(x) ∈ TxM .

Locally, any section ξα of TVα = Vα × Aα → Vα is given by the graph of a
function

ξα(x) = (x,Xα(x)), Xα : Vα → Aα.

This section is continuous, smooth, or holomorphic depending on whether
the function Xα has the corresponding regularity.



6. Tangent bundle; part I 49

Globally, a section ξ corresponds to a collection of functions
{
Xα : Vα →

Aα

}
α∈I that are compatible on overlaps with respect to the transition func-

tions, in the sense that

(6.3) Xβ(y) = dxφα 7→β(Xα(x)) for all α, β ∈ I and y = φα 7→β(x).

Depending on the context, a section is said to be continuous, smooth, or
holomorphic if it is locally of that type.

Remark 6.8. Every smooth manifold admits a plethora of smooth vec-
tor fields. One can start with an arbitrary collection of local vector fields
on charts and patch them together to define a global vector field using a
partition of unity. On the other hand, for closed (i.e., compact without
boundary) holomorphic manifolds, the space of holomorphic vector fields is
finite-dimensional and may even be trivial. This reflects, in part, the fact
that holomorphic partitions of unity do not exist.

Exercise 6.9. Recall from Section 2 and the solution to Exercise 3.5 that
RPn (respectively, CPn) can be covered by n + 1 charts φj : Uj → Vj ∼= Rn

(respectively, Cn), for j = 0, . . . , n, with transition maps given by

φi 7→j = φj ◦ φ−1
i

(
(xk)k ̸=i

)
= (yk)k ̸=j , where yk =

{
xk/xj if k ̸= i,

1/xj if k = i.

Does the vector field

X0(x) ..= x1∂x1 + · · ·+ xn∂xn

defined on V0 extend smoothly (respectively, holomorphically) to a vector
field on all of RPn (respectively, CPn)? If so, what is its expression on the
other charts Vj? (Here, ∂xi denotes the constant coordinate vector field
corresponding to the i-th standard basis vector ei of Rn or Cn.)

Exercise 6.10. Recall that the 2-sphere S2 ⊂ R3 can be covered by two
charts φ± : U± → V± ∼= R2, with transition map

φ+ 7→− : V+,− = R2 \ {0} → V−,+ = R2 \ {0}, x = (x1, x2) 7→
1

|x|2
(x1, x2).

Which of the following vector fields on V+ extend smoothly to all of S2?

x1∂x1 + x2∂x2 , x1∂x1 − x2∂x2 , x2∂x1 − x1∂x2 .

Exercise 6.11. Show that the map φ : R3 → R3 defined by

φ(x, y, z) = (2y,−x,−xy + z)

is a diffeomorphism. Let X = x∂x + y∂y be a vector field on R3. If the
pushforward dφ(X) is expressed in coordinates as

dφ(X) = a∂x + b∂y + c∂z,
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find the coefficient functions a, b, and c.

Exercise 6.12. Show that the complex vector space of holomorphic vector
fields on CP1 is 3-dimensional and find a basis.

Remark 6.13. In a future exercise, you will learn to prove that the com-
plex vector space of holomorphic vector fields on any complex 2-torus is
1-dimensional. For closed Riemann surfaces (i.e., closed holomorphic mani-
folds of complex dimension 1) of genus g > 1, one can show that there are
no nontrivial holomorphic vector fields. We do not yet have the tools to
prove this.
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Solutions to exercises

Exercise 6.9. We compute the expression forX0 in terms of the coordinates
on Vj , for each j = 1, . . . , n, over the overlap region

Vj,0 = {(yk)k ̸=j : y0 ̸= 0},

and check whether this expression extends smoothly or holomorphically to
the entire Vj . Since U0 is dense in projective space, such an extension,
if it exists, would be unique. To do this, we compute the pushforward
dφ07→j(X0). We have

dφ07→j(X0) =
n∑

i=1

xi dφ0 7→j(∂xi) =

n∑
i=1

xi
∑
k ̸=j

∂yk
∂xi

∂yk .

The partial derivatives are given by

∂yk
∂xi

=



1/xj if i = k ̸= 0,

−xk/x2j if k ̸= 0, i = j,

0 if k ̸= 0, i ̸= k, j,

−1/x2j if k = 0, i = j,

0 if k = 0, i ̸= j.

Therefore,

dφ07→j(X0) =
∑
i ̸=j,0

xi
∂yi
∂xi

∂yi +
∑
i ̸=j,0

xj
∂yi
∂xj

∂yi +

n∑
i=1

xi
∂y0
∂xi

∂y0

=
∑
i ̸=j,0

xi
xj

∂yi −
∑
i ̸=j,0

xi
xj

∂yi −
1

xj
∂y0 = − 1

xj
∂y0 = −y0 ∂y0

It is clear that this final expression extends smoothly (or holomorphically)
to the entirety of Vj , depending on context. Thus, the local vector field
X0 on V0, together with the local vector fields Xj = −y0 ∂y0 on Vj for all
j = 1, . . . , n, are compatible on overlaps and define a global vector field ξ
on projective space. □

Exercise 6.10. Let y = (y1, y2) denote the coordinates on V−. It is always
good practice to distinguish between the coordinates on the domain and those
on the target, since in computing the pushforward we eventually need to
express coefficients with respect to the target coordinates.

Since

(y1, y2) =
1

x21 + x22
(x1, x2),
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we compute

dφ+7→− =

[
∂y1/∂x1 ∂y1/∂x2
∂y2/∂x1 ∂y2/∂x2

]
=

1

|x|4

[
x22 − x21 −2x1x2
−2x1x2 x21 − x22

]
.

We find that

dφ+ 7→−(x1∂x1 + x2∂x2) =
1

|x|4

[
x22 − x21 −2x1x2
−2x1x2 x21 − x22

] [
x1
x2

]
=

1

|x|2

[
−x1
−x2

]
=

[
−y1
−y2

]
;

dφ+ 7→−(x1∂x1 − x2∂x2) =
1

|x|4

[
x22 − x21 −2x1x2
−2x1x2 x21 − x22

] [
x1
−x2

]
=

1

|x|4

[
−x31 + 3x1x

2
2

x32 − 3x2x
2
1

]
;

dφ+ 7→−(x2∂x1 − x1∂x2) =
1

|x|4

[
x22 − x21 −2x1x2
−2x1x2 x21 − x22

] [
x2
−x1

]
=

1

|x|2

[
x2
−x1

]
=

[
y2
−y1

]
.

The first equation shows that the local vector field x1∂x1 + x2∂x2 on V+
matches the local vector field −y1∂y1 − y2∂y2 on V−. Together they define
a global vector field on S2 that vanishes at two antipodal points – one a
source (where vectors point outward) and the other a sink (where vectors
point inward).

The third equation shows that the local vector field x2∂x1 − x1∂x2 on V+
matches the local vector field y2∂y1 − y1∂y2 on V−. These together define a
global vector field on S2 that also vanishes at two antipodal points. This
vector field corresponds to rotation around the axis passing through those
points.

In the second equation, we also note:

1

|x|4

[
−x31 + 3x1x

2
2

x32 − 3x2x
2
1

]
= |y|−2

[
−y31 + 3y1y

2
2

y32 − 3y2y
2
1

]
,

and ask whether the rational functions

y1(3y
2
2 − y21)

y21 + y22
and

y2(y
2
2 − 3y21)

y21 + y22
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admit continuous or smooth extensions to the origin y = (0, 0). In polar
coordinates, we have

y1(3y
2
2 − y21)

y21 + y22
= r cos(θ)(4 sin2(θ)− 1),

y2(y
2
2 − 3y21)

y21 + y22
= −r sin(θ)(4 cos2(θ)− 1).

Thus, the vector field

|y|−2

[
−y31 + 3y1y

2
2

y32 − 3y2y
2
1

]
extends continuously to the origin r = 0 by the zero vector. However, for
instance,

∂

∂y2

(
3y22y1 − y31
y21 + y22

)
=

6y1y2|y|2 − 6y32y1 + 2y2y
3
1

|y|4
= 8 sin(θ) cos(θ)3,

which does not extend continuously to the origin. We conclude that the
local vector field x1∂x1 + x2∂x2 on V+ defines a continuous vector field on
all of S2, but the extension fails to be C1 at one point.

□

Exercise 6.11. For the sake of clarity, let us denote the target coordinates
by (x, y, z). Then,

(x, y, z) = (2y,−x,−xy + z),

so that

(x, y, z) = (−y,
x

2
, z− xy

2
).

Therefore, φ is a diffeomorphism. We have

dφ(x
∂

∂x
+ y

∂

∂y
) = x

{
∂x

∂x
∂x +

∂y

∂x
∂y +

∂z

∂x
∂z

}
+ y

{
∂x

∂y
∂x +

∂y

∂y
∂y +

∂z

∂y
∂z

}
= x∂x + y∂y + xy∂z.

Switching the notation back from (x, y, z) to (x, y, z), we get

a(x, y, z) = x, b(x, y, z) = y, c(x, y, z) = xy.

□

Exercise 6.12. Recall from the solution to Exercise 2.11 that CP1 can be
covered by two copies of C, V0 = C and V1 = C, with the following gluing
data:

• V0,1, V1,0 = C∗;

• the transition map φ07→1 : C∗ → C∗ is given by z 7→ w = z−1, where
z is the coordinate on V0 and w is the coordinate on V1.
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Therefore, a holomorphic vector field on CP1 is given by a collection of two
local holomorphic vector fields f(z)∂z and g(w)∂w on V0 and V1, respectively,
such that

g(w)∂w = dφ07→1(f(z)∂z).

We have
dφ0 7→1(f(z)∂z) = f(z) dφ07→1(∂z) = −f(z)z−2∂w.

Therefore, the compatibility condition becomes

−z2g(z−1) = f(z).

Since f and g are holomorphic functions on the entire plane, they have
everywhere convergent Taylor series:

f(z) =
∞∑
n=0

anz
n, g(w) =

∞∑
n=0

bnw
n.

Using these expressions, the compatibility equation reads

−
∞∑
n=0

bnz
2−n =

∞∑
n=0

anz
n.

We conclude that both f(z) and g(w) are quadratic polynomials and

a0 = −b2, a1 = −b1, a2 = −b0.
Hence, the complex vector space of holomorphic vector fields on CP1 is
3-dimensional and has basis ∂z, z∂z, z

2∂z.
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Tangent bundle; part II

In this lecture, we explore the identification of tangent spaces and vector
fields with corresponding spaces of derivations.

For every open subset V of an affine space A (or of Hm), let C∞(V,R) denote
the space of smooth real-valued functions on V . Every vector field X on V
defines an R-linear operator

DX : C∞(V,R) → C∞(V,R)

by the formula

DX(f) ..= X · f ..= df(X) = lim
t→0

f(x+ tX)− f(x)

t
.

In local coordinates (x1, . . . , xm), if X =
∑m

i=1 ai(x) ∂xi , then

X · f = df

(
m∑
i=1

ai(x) ∂xi

)
=

m∑
i=1

ai(x)
∂f

∂xi
.

While the limit above does not make sense on abstract manifolds, the notion
of a “derivation” provides an intrinsic generalization. We will later prove
that there is a one-to-one correspondence between derivations and vector
fields in the sense of Definition 6.7.

Definition 7.1. Let M be a smooth manifold. Denote by C∞(M,R) the
space of smooth functions M → R. A derivation on M is an R-linear map

D : C∞(M,R) −→ C∞(M,R)

satisfying the Leibniz rule:

D(fg) = fD(g) + gD(f) ∀ f, g ∈ C∞(M,R).

55
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Similarly, if M is a holomorphic manifold, let Chol(M,C) denote the space
of holomorphic functions M → C. A holomorphic derivation on M is a
C-linear map

D : Chol(M,C) −→ Chol(M,C)
also satisfying the Leibniz rule. We denote the space of smooth and holo-
morphic derivations by DerC∞(M) and Derhol(M), respectively.

Remark 7.2. For closed holomorphic manifolds, the space Chol(M,C) con-
sists only of constant functions. As a result, Derhol(M) is trivial and not an
interesting object to study.

Definition 7.3. Let M be a smooth manifold. Two smooth functions
f : U → R and g : U ′ → R, defined on neighborhoods of p ∈ M , are said
to have the same germ at p if they agree on some smaller neighborhood
U ′′ ⊂ U ∩ U ′.

Similarly, ifM is a holomorphic manifold, two holomorphic functions f : U →
C and g : U ′ → C have the same germ at p if they coincide on some neigh-
borhood U ′′ ⊂ U ∩ U ′.

For any p ∈ M , having the same germ is an equivalence relation on the set
of smooth (or holomorphic) functions defined near p. Each equivalence class
is called the germ of a smooth (or holomorphic) function at p. The set of
all such germs is denoted by C∞

p (M,R) or Chol
p (M,C), respectively. These

are rings under point-wise addition and multiplication. The operations are
well-defined because representative functions can always be restricted to a
common domain without affecting the germ. The property of vanishing at
a point is well-defined for germs of functions at that point. In both the
smooth and holomorphic cases, we denote by Ip the ideal in C∞

p (M,R) or

Chol
p (M,C) consisting of germs of functions that vanish at p.

Remark 7.4. In the holomorphic case, if f and g have the same germ at
p, and U and U ′ are connected, then there exists a holomorphic function on
the union U ∪ U ′ that restricts to f on U and to g on U ′. In other words,
every holomorphic function on a connected domain is uniquely determined
by its germ at any point. Thus, the situation is much more rigid than in the
smooth case.

Definition 7.5. Let M be a smooth manifold. A derivation at p ∈M is
an R-linear map

D : C∞
p (M,R) → R

satisfying the Leibniz rule:

D(fg) = f(p)D(g) + g(p)D(f) ∀ f, g ∈ C∞
p (M,R).

We denote the space of such derivations by DerC∞(M,p).
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Similarly, if M is a holomorphic manifold, a holomorphic derivation at
p is a C-linear map

D : Chol
p (M,C) → C

satisfying the Leibniz rule. The space of such derivations is denoted by
Derhol(M,p).

Theorem 7.6. (i) For every point p ∈M , there are canonical isomorphisms
of vector spaces

TpM ∼= Der⋆(M,p) ∼= (Ip/I
2
p )

∗,

where ⋆ denotes either C∞ or hol, depending on whether M is a smooth or
holomorphic manifold.

(ii) If M is smooth, there is C∞(M,R)-module isomorphism between the
space of smooth vector fields on M and DerC∞(M).

Remark 7.7. A statement analogous to Theorem 7.6.(ii) holds for holo-
morphic manifolds; however, the proof given below does not extend to this
setting, as holomorphic manifolds do not admit compactly supported func-
tions. In algebraic geometry, too, the analogue of the quotient (Ip/I

2
p )

∗ plays
the role of the tangent space at a point; c.f [Har77, Ch. II.8]

Proof. Part (i).
Claim A. For every derivation D on M and every constant function c, we
have D(c) ≡ 0. The same holds for derivations at a point p and the germ of
a constant function c at p.

Proof of Claim A. By the Leibniz rule,

D(1) = D(1 · 1) = D(1) +D(1).

Therefore, D(1) = 0. By R-linearity (or C-linearity), we have D(c) =
cD(1) = 0. □

Claim B. Every D ∈ Der⋆(M,p) vanishes on I2p .

Proof of Claim B. The ideal I2p consists of real or complex linear combi-
nations of products of elements in Ip. So it suffices to show that D(fg) = 0
for all f, g ∈ Ip. By the Leibniz rule,

D(fg) = f(p)D(g) + g(p)D(f) = 0.

□

Conclusion I. By Claim B, every derivation D at p descends to a well-
defined linear map

D : Ip/I
2
p −→ R or C,
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depending on the context. Furthermore, by Claim A, D is uniquely deter-
mined by its action on Ip. That is, we obtain a canonical injective linear
map

Der⋆(M,p) −→ (Ip/I
2
p )

∗.

Conversely, any linear map on Ip/I
2
p lifts to a derivation at p. Hence, we

obtain a canonical isomorphism

Der⋆(M,p) ∼= (Ip/I
2
p )

∗.

Claim C. Every v ∈ TpM in the sense of (6.2) naturally defines a derivation
Dv at p, giving a linear map

TpM −→ Der⋆(M,p).

Proof of Claim C. Let φ : U −→ V be a chart around p, sending p to
0 ∈ V . Then, by definition, v corresponds to a vector in T0V . For any
smooth or holomorphic function f defined on a neighborhood of p, define

Dv(f) = lim
t→0

(f ◦ φ−1)(tv)− (f ◦ φ−1)(0)

t
.

This limit exists by smoothness or holomorphicity of f , and Dv satisfies the
Leibniz rule. □

Remark 7.8. The assignment v 7→ Dv depends on the choice of chart,
but different charts yield the same operator Dv by the chain rule and the
definition of TpM .

Claim D. Suppose U is an open neighborhood of p and φ : U → Bε(0) ⊂ Rm

(or Cm) is a chart (in the smooth or holomorphic atlas ofM) with φ(p) = 0.
Then for every function f defined near p,

(7.1) f ◦ φ−1(x1, . . . , xm) = f(p) +

m∑
i=1

xigi(x),

where the functions gi are smooth or holomorphic (depending on context),
and

gi(0) =
∂(f ◦ φ−1)

∂xi
(0).

Proof of Claim D. In the holomorphic case, the result follows directly
from the Taylor expansion. We give the proof in the smooth case.
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For x ∈ Bε(0), by the Fundamental Theorem of Calculus (first equality) and
the chain rule (second), we have

f ◦ φ−1(x)− f ◦ φ−1(0) =

∫ 1

0

d

dt

(
f ◦ φ−1(tx)

)
dt

=

∫ 1

0

m∑
i=1

xi
∂(f ◦ φ−1)

∂xi
(tx) dt

=
m∑
i=1

xi

∫ 1

0

∂(f ◦ φ−1)

∂xi
(tx) dt.

Define

gi(x) =

∫ 1

0

∂(f ◦ φ−1)

∂xi
(tx) dt for i = 1, . . . ,m.

Each gi is smooth, and the formula (7.1) holds. Moreover,

gi(0) =

∫ 1

0

∂(f ◦ φ−1)

∂xi
(0) dt =

∂(f ◦ φ−1)

∂xi
(0).

Conclusion II. Applying any derivation D at p to (7.1), we get

D(f) =
m∑
i=1

∂(f ◦ φ−1)

∂xi
(0) ·D(xi).

Here, we treat the i-th coordinate xi as function from U to R or C. Let
ai = D(xi) ∈ R or C, and define

v =
m∑
i=1

ai∂xi ∈ T0V.

Then Dv(f) = D(f) for every f in C∞
p (M,R) or Chol

p (M,C), depending on
context. This gives an inverse

(7.2) Der⋆(M,p) −→ TpM, D 7→
m∑
i=1

D(xi)∂xi

to the linear map in Claim C. Therefore, we obtain a canonical isomorphism

TpM ∼= Der⋆(M,p).

These steps complete the proof of part (i) of Theorem 7.6.

For part (ii), in one direction, we show that every D ∈ DerC∞(M) induces
a derivation Dp at each point p ∈ M . By part (i), Dp is equal to Dv(p) for
some v(p) ∈ TpM . Thus, the collection {v(p)}p∈M defines a vector field ξ
on M . Moreover, it follows from (7.2) that the coefficients of ξ in any chart
are smooth; hence, ξ is a smooth vector field.
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Suppose f is a smooth function defined on an open set U containing p.
Choose an open subset U ′ ⊂ U such that p ∈ U ′ and clMU

′ ⊂ U is compact.
Then there exists a compactly supported smooth function ϱ : U → [0, 1] such
that ϱ|U ′ ≡ 1. The function ϱf can be extended by zero to all of M and
agrees with f in a neighborhood of p, so it defines the same germ at p as f .
We define the induced derivation at p by

Dp(f) ..=
(
D(ϱf)

)
(p),

which satisfies the Leibniz rule at p and is well-defined.

In the other direction, given a vector field ξ as defined in Definition 6.7, it
corresponds to a collection of local vector fields

{
Xα : Vα → Aα

}
α∈I that

are compatible on overlaps with respect to the transition functions, in the
sense that

Xβ(y) = Dxφα 7→β(Xα(x)) for all α, β ∈ I and y = φα 7→β(x).

Similarly, every smooth function f : M → R is represented by a compatible
collection of functions

{
fα : Vα → R

}
α∈I , in the sense that

fα = fβ ◦ φα 7→β for all α, β ∈ I.

Define

f̃α = Xα · fα for all α ∈ I.
It follows from the chain rule that the collection {f̃α : Vα → R}α∈I is also

compatible, and thus defines a global smooth function f̃ : M → R. We
define the derivation associated to ξ by

Dξ(f) ..= f̃ ,

as desired.

It is easy to verify that Dgξ = gDξ. Therefore, the map

ξ −→ Dξ

define a C∞(M,R)-module isomorphism between the space of smooth vector
fields on M and DerC∞(M).

□

Exercise 7.9. Every open set U ⊂ M of a smooth manifold M is itself
a smooth manifold. Therefore, Definition 7.1 applies to U . Show that if
U ⊂ U ′ are open subsets of M , then there is a canonical restriction map

DerC∞(U ′) −→ DerC∞(U).

For every pair of open subsets U1 and U2, suppose D1 ∈ DerC∞(U1) and
D2 ∈ DerC∞(U2) have the same restriction to U1 ∩ U2. Show that there
exists D ∈ DerC∞(U1 ∪ U2) such that D|Ui = Di for i = 1, 2.
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Definition 7.10. Given a smooth manifoldM and two derivationsD1, D2 ∈
DerC∞(M), their commutator is the operator

[D1, D2] : C
∞(M,R) −→ C∞(M,R),

[D1, D2](f) = D1(D2(f))−D2(D1(f)) ∀ f ∈ C∞(M,R).

Lemma 7.11. For all D1, D2 ∈ DerC∞(M), the commutator [D1, D2] is
also a derivation on M .

Proof. The commutator of two R-linear maps is R-linear. We must verify
the Leibniz rule. We compute:

[D1, D2](fg) = D1(D2(fg))−D2(D1(fg))

= D1(fD2(g) + gD2(f))−D2(fD1(g) + gD1(f))

= fD1(D2(g)) +D1(f)D2(g) +D1(g)D2(f) + gD1(D2(f))

−D2(f)D1(g)− fD2(D1(g))−D2(g)D1(f)− gD2(D1(f))

= f
(
D1(D2(g))−D2(D1(g))

)
+ g
(
D1(D2(f))−D2(D1(f))

)
= f [D1, D2](g) + g[D1, D2](f).

This confirms that [D1, D2] satisfies the Leibniz rule. □

Corollary 7.12. For every pair of smooth vector fields ζ, ξ on M , there
exists a vector field [ζ, ξ] on M , called the Lie bracket of ζ and ξ, such
that

[ζ, ξ] · f = ζ · (ξ · f)− ξ · (ζ · f) ∀ f ∈ C∞(M,R).

Proof. This follows from the lemma above and Theorem 7.6.(ii). □

Exercise 7.13. In local coordinates (x1, . . . , xm), suppose

X1 =
m∑
i=1

ai(x) ∂xi and X2 =
m∑
i=1

bi(x) ∂xi .

Compute the coefficients of the expansion of the Lie bracket [X1, X2] in
terms of the functions ai(x) and bi(x).

Exercise 7.14. Let

X1 =

n∑
i=1

xi∂yi and X2 =

n∑
i=1

yi∂xi

be vector fields on R2n with coordinates (x1, . . . , xn, y1, . . . , yn). Compute
[X1, X2].
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Solutions to exercises

Exercise 7.9. Starting with any D ∈ DerC∞(U ′), by Theorem 7.6.(ii),
there is a vector field ξ on U ′ such that D(f) = ξ · f for all f ∈ C∞(U ′,R).
Define D|U ∈ DerC∞(U) to be the derivation corresponding to the restricted
vector field ξ|U .

Remark 7.15. A direct description of the restriction D|U is possible but
takes longer to describe, because not every f ∈ C∞(U,R) extends smoothly
to U ′. In order to directly define D|U by its action on f , we can describe
the output function

D|U (f) = g

as follows. For every point p ∈ U , choose a bump function ϱ supported in
U that is equal to 1 near p and such that ϱf extends smoothly to U ′. Then
define g(p) to be the value of D(ϱf) at p. With this definition, one must
check that g is independent of the choice of ϱ and that it satisfies the Leibniz
rule. The approach used above via vector fields is clearly simpler.

If ξ1 and ξ2 are the vector fields corresponding toD1 andD2, then ξ1|U1∩U2 =
ξ2|U1∩U2 . Therefore, they patch together to define a vector field ξ on U1∪U2,
which determines a derivation D on U1 ∪ U2 such that D|Ui = Di. □

Exercise 7.13. Since partial derivatives commute, we have

[∂xi , ∂xj ] = 0 ∀ 1 ≤ i, j ≤ m.

Also, it is easy to show that

[fX1, X2] = f [X1, X2]−(X2 ·f)X1, [X1, fX2] = f [X1, X2]+(X1 ·f)X2.

Therefore,[
m∑
i=1

ai(x) ∂xi ,
m∑
j=1

bj(x) ∂xj

]
=

m∑
i=1

m∑
j=1

[
ai(x) ∂xi , bj(x) ∂xj

]
=

m∑
i=1

m∑
j=1

(
ai [∂xi , bj ∂xj ]− bj

∂ai
∂xj

∂xi

)
=

m∑
i=1

m∑
j=1

(
ai
∂bj
∂xi

∂xj − bj
∂ai
∂xj

∂xi

)

=
m∑
i=1

 m∑
j=1

aj
∂bi
∂xj

− bj
∂ai
∂xj

 ∂xi .

□
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Exercise 7.14. Similarly to the previous exercise, we have[
n∑

i=1

xi ∂yi ,
n∑

j=1

yj ∂xj

]
=

n∑
i=1

n∑
j=1

[
xi ∂yi , yj ∂xj

]
=

n∑
i=1

n∑
j=1

(
xi [∂yi , yj ∂xj ]− yj

∂xi
∂xj

∂yi

)

=
n∑

i=1

n∑
j=1

(
xi
∂yj
∂yi

∂xj − yj
∂xi
∂xj

∂yi

)

=

n∑
i=1

(xi ∂xi − yi ∂yi) .

□





Chapter 8

Regular level sets

In this lecture, we define and study the smooth (respectively, holomorphic)
derivative

df : TM −→ TM ′

of a smooth (respectively, holomorphic) map f : M −→M ′, which opens up
many possibilities for doing interesting things with manifolds. The derivative

df : TM −→ TM ′

is a lift of f that, depending on the context, maps the fiber TpM to Tf(p)M
′

by a real or complex linear map, for every point p ∈M .

Consider smooth or holomorphic atlases

A =
{
φα : Uα −→ Vα ⊂ Aα

}
α∈I and A′ =

{
φα′ : U ′

α′ −→ V ′
α′ ⊂ A′

α′
}
α′∈I′

on M and M ′, respectively. From the perspective of Section 6, the tangent
bundle TM is constructed by gluing together the local models TVα ∼= Vα×Aα

via transition maps

Vα,β ×Aα −→ Vβ,α ×Aβ, (x, v) 7→
(
φα 7→β(x), Dxφα 7→β(v)

)
.

The construction of TM ′ is similar. Also, from this point of view, a map
f : M −→M ′ corresponds to a collection of maps

fα 7→α′ : Vα;α′ ⊂ Vα −→ Vα′ ∀ α ∈ I, α′ ∈ I ′,

satisfying the compatibility condition

(8.1) φα′ 7→β′ ◦ fα 7→α′ = fβ 7→β′ ◦ φα 7→β ∀ α, β ∈ I, α′, β′ ∈ I ′;

see Section 4. The derivative df is then given by a collection of maps

(8.2) dfα 7→α′ : TVα;α′ = Vα;α′ ×Aα −→ Vα′ ×A′
α′ ∀ α ∈ I, α′ ∈ I ′,

65
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where each dfα 7→α′ is the usual derivative in the calculus sense:

dfα 7→α′(x, v) =
(
y = fα 7→α′(x), w

)
,

w = lim
t→0

fα 7→α′(x+ tv)− fα 7→α′(x)

t
∈ A′

α′ .

When Aα = Rm and A′
α′ = Rm′

, the derivative dxfα 7→α′ is represented by an

m′ ×m matrix of partial derivatives. If instead Aα = Cm, A′
α′ = Cm′

, and
fα 7→α′ is holomorphic, then dxfα 7→α′ is a matrix in Mm′×m(C) consisting of
holomorphic partial derivatives.

Applying the chain rule to equation (8.1) gives

dφα′ 7→β′ ◦ dfα 7→α′ = dfβ 7→β′ ◦ dφα 7→β ∀ α, β ∈ I, α′, β′ ∈ I ′.

This shows that the collection of local maps in (8.2) is compatible with the
transition maps of TM and TM ′, and therefore defines a global derivative
map

df : TM −→ TM ′

satisfying the properties described in the first paragraph.

Moving to the derivation perspective of Section 7, a vector v ∈ TpM corre-
sponds to a derivation

D : C∞
p (M,R) → R.

To define dpf(v) ∈ Tf(p)M
′, we describe the corresponding derivation D′

acting on germs of smooth functions h : U ′ → R at f(p). Define

D′(h) = D(h ◦ f) ∀ h ∈ C∞
f(p)(M

′,R).

It is straightforward to verify that D′ satisfies the Leibniz rule and is indeed
a derivation. We leave it to the reader to verify that the two definitions are
equivalent under the correspondence of Theorem 7.6.(i).

For every smooth map or holomorphic map f : M → N , since

dpf : TpM −→ Tf(p)N

is a linear map, the quantity

rankpf ..= rank
(
dpf : TpM −→ Tf(p)N

)
≤ dimM,dimN

is well-defined and plays an important role in classifying different types of
maps.

Definition 8.1. For every smooth or holomorphic map f : M → N , we say:

• f is an immersion if dpf is injective for all p ∈ M (this requires
dimM ≤ dimN);
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• f is a submersion if dpf is surjective for all p ∈ M (this requires
dimM ≥ dimN);

• f has constant rank if rankpf = r for all p ∈M and some r ≥ 0;

• f is an embedding if f is an immersion and a homeomorphism
onto its image;

The first two are special cases of the third, corresponding to r = dimM and
r = dimN , respectively.

Remark 8.2. Note that rankpf is upper semicontinuous in p, meaning that
if rankpf = r, then rankqf ≥ r for all q in a sufficiently small neighborhood
of p. This follows from the fact that in local coordinates, the matrix of
partial derivatives varies smoothly with p. If rankpf = r, there exists an
r × r minor of the Jacobian matrix at p with nonzero determinant. Since
being nonzero is an open condition, that determinant remains nonzero in a
neighborhood of p.

In particular, if the derivative is full rank at a point p, it remains full rank
on a neighborhood of p:

(i) If dpf is injective at some p ∈ M , then f is an immersion in a
neighborhood of p.

(ii) If dpf is surjective at some p ∈ M , then f is a submersion in a
neighborhood of p.

Definition 8.3. We say q ∈ N is a regular value if dpf is surjective for
all p ∈ f−1(q). If q is not a regular value, we say q is a critical value.

Before discussing various cases and the importance of regular values, let
us define the notion of submanifold that corresponds to embeddings (see
Exercise 8.8.).

Definition 8.4. Given a manifold N and a maximal atlas A of some reg-
ularity type, we say that a subset M ⊂ N is a submanifold if for every
point p ∈M , there exists a chart φ : U → V ⊂ A around p in A such that

φ(U ∩M) = V ∩A′

for some affine subspace A′ ⊂ A.

Lemma 8.5. (i) If N is smooth or holomorphic and M ⊂ N is a sub-
manifold (with respect to the maximal atlas of the smooth or holomorphic
structure), then M inherits a smooth or holomorphic structure, respectively.

(ii) If N1, N2 are smooth or holomorphic, Mi ⊂ Ni are submanifolds (with
respect to the maximal atlases of the smooth or holomorphic structures), and
f : N1 −→ N2 is smooth or holomorphic such that f |M1 maps into M2, then
the restriction f |M1 : M1 −→M2 is also smooth or holomorphic, respectively.
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Proof. Part (i). By definition, the charts defining the induced smooth
or holomorphic structure on M are the restrictions to M of those charts
φ : U −→ V ⊂ A on N for which φ(U ∩ M) = V ∩ A′ for some affine
subspace A′ ⊂ A. Given two such charts,

φi : Ui −→ Vi ⊂ Ai, i = 1, 2,

the transition map between the induced charts on M is the restriction

φ2 ◦ φ−1
1

∣∣
A′

1∩V1,2
: V1,2 ∩A′

1 −→ V2,1 ∩A′
2.

Since the map

φ2 ◦ φ−1
1 : V1,2 −→ V2,1

is smooth or holomorphic by assumption, its restriction to any affine sub-
space is also smooth or holomorphic.

Part (ii). This part is similar: given charts

φi : Ui −→ Vi ⊂ Ai, i = 1, 2,

on Ni, the composition φ2 ◦ f ◦ φ−1
1 is smooth or holomorphic, and we are

restricting it to an affine subspace of the domain. Such a restriction remains
smooth or holomorphic. □

Remark 8.6. Lemma 8.5 will be very useful in examples. For instance, in
the solution to Exercise 3.8, the map f is the restriction to R × S1 of the
smooth automorphism

R3 → R3, (x, x0, x1) 7→
(
x, f(x)x0, f(x)x1

)
.

Therefore, once we know that R × S1 is a smooth submanifold of R3, one
can immediately conclude that f is smooth.

The result that allows us to characterize constant rank maps – especially
immersions and submersions – is the Constant Rank Theorem stated below.

Theorem 8.7 (Constant Rank Theorem). Suppose f : M −→ N is a smooth
or holomorphic map of constant rank r. Then, for every p ∈M , there exist
charts

φ1 : U1 −→ V1 ⊂ A1 around p on M

and

φ2 : U2 −→ V2 ⊂ A2 around f(p) on N

such that the map φ2◦f ◦φ−1
1 is the restriction of a linear map L : A1 −→ A2

of rank r.

We will discuss the proof of the Constant Rank Theorem in Section 10 and
explore some of its powerful applications throughout the remainder of this
one.
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Exercise 8.8. Use the Constant Rank Theorem to show that M ⊂ N is a
smooth submanifold if and only if it is the image of an embedding.

Lemma 8.9. Suppose f : M −→ N is a smooth or holomorphic map and q ∈
N is a regular value. Then the level set Y = f−1(q) is a smooth or holomor-
phic submanifold of M , respectively. Furthermore, dimY = dimM −dimN
and

TpY = ker(dpf : TpM −→ Tf(p)N) ∀ p ∈ Y.

Proof. By Remark 8.2, f is a submersion on an open neighborhood U of Y .
Since rankpf = dimN for all p ∈ U , the Constant Rank Theorem (applied
to f |U ) implies that for every p ∈ Y , there exist charts

φ1 : U1 −→ V1 ⊂ A1 around p, φ2 : U2 −→ V2 ⊂ A2 around q,

with φ1(p) = 0 and φ2(q) = 0, such that the map φ2◦f◦φ−1
1 is the restriction

of a surjective linear map L : A1 −→ A2. Therefore,

φ1(Y ∩ U1) = ker(L) ∩ V1.

This shows that every point p ∈ Y admits a chart as in Definition 8.4, with
A′ = ker(L). The last two observations also follow from the fact that the
induced chart on Y takes values in the affine subspace ker(L). □

Theorem 8.8 is a powerful tool for constructing interesting manifolds as
submanifolds of simpler ones like Rm, fulfilling item 4 in the introductory
paragraph of Section 5. Here’s an example, with many more to be discussed
in the exercises.

Example 8.10. The m-dimensional unit sphere Sm arises as the level set

Sm = f−1(1) ⊂ Rm+1

of the smooth function

f : Rm+1 −→ R, x = (x0, . . . , xm) 7→
m∑
i=0

x2i .

Its differential is given by

df = 2

m∑
i=0

xi dxi,

where for each x ∈ Rm+1, the map dxi : TxRm+1 −→ Tf(x)R = R is the
linear function that sends ∂xi to 1 and ∂xj to 0 for all j ̸= i.

In general, for a smooth function f : M → R, a point q ∈ R is a regular value
if and only if dpf ̸= 0 for all p ∈ f−1(q). In this example, the only point
where df vanishes is the origin, which does not lie on Sm. We conclude that
Sm is a regular level set and inherits a smooth manifold structure from Rm+1.
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It is easy to check that this agrees with the smooth structure described in
Section 2.

Exercise 8.11. Show that the matrix groups O(n), SU(n), and SL(n,R)
are smooth manifolds. What is the dimension of each? Show that SU(2) is
diffeomorphic to S3.

Exercise 8.12. Provide a smooth embedding of Sm × Sn into Rm+n+1.

Exercise 8.13. Show that the map

f : R3 \ {0} −→ R5, f(x, y, z) = (xy, yz, zx, x2 − y2, x2 + y2 + z2 − 1)

is an immersion. Use f to construct an embedding RP2 ↪→ R4.

Exercise 8.14. For a > b > 0, show that the surface

M = {(x, y, z) ∈ R3 | (r − a)2 + z2 = b2}
is diffeomorphic to a 2-torus. Here, r2 = x2 + y2.

Exercise 8.15. For every 4× 2 matrix A and 1 ≤ i < j ≤ 4, let Aij denote
the 2× 2 minor of A corresponding to the i-th and j-th rows, and define

f(A) =
(
det(A12), . . . ,det(A34)

)
∈ R6.

Use f to construct an embedding (called the Plücker embedding) of the
Grassmannian Gr2(R4) into RP5.

Exercise 8.16. Over R or C, we define an elliptic curve C to be the solution
set of a cubic equation(

y2 = x3 + ax+ b
)
⊂ R2 or C2,

where a and b are real or complex, depending on the context. Find con-
ditions on P under which C is a smooth manifold. In the complex case,
determine whether the closure of C in CP2 is also a (compact) manifold.
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Solutions to exercises

Exercise 8.8. If M ⊂ N is a smooth submanifold, then the inclusion map
ι : M → N is an embedding.

Conversely, suppose M is the image of an embedding f : M ′ −→ N . By the
Constant Rank Theorem, for every p ∈M ′, there exist charts

φ1 : U1 −→ V1 ⊂ A1 around p on M ′,

and

φ2 : U2 −→ V2 ⊂ A2 around f(p) on N,

such that the map φ2 ◦ f ◦ φ−1
1 is the restriction of an injective linear map

L : A1 −→ A2, and it is a homeomorphism onto its image.

Let A′ = L(A1). The fact that f is a homeomorphism onto its image implies
that

φ2(M ∩ U2) = V2 ∩A′,

i.e., every point f(p) ∈M admits a chart as in Definition 8.4. □

Exercise 8.11. We have SL(n,R) = det−1(1), where

det : Mn×n(R) ∼= Rn2 −→ R

is the determinant function. Since det is a polynomial in the matrix entries,
it is smooth. To show that 1 is a regular value, it suffices to show that
dA det ̸= 0 for all A ∈ SL(n,R).
Consider the curve γ(t) = etA through A. Then,

d

dt
det(etA) =

d

dt

(
ent det(A)

)
= nent det(A).

At t = 0, this derivative is n · det(A) = n ̸= 0, since det(A) = 1. Therefore,
dA det ̸= 0 for all A ∈ SL(n,R), and so 1 is a regular value.

We have

O(n) =
{
A ∈Mn×n(R) : ATA = In

}
.

Thus, O(n) = f−1(In), where

f : Mn×n(R) ∼= Rn2 −→M sym
n×n(R) ∼= Rn(n+1)/2

is the map A 7→ ATA into the space of symmetric n × n matrices. By the
product rule, the derivative

dAf : TAMn×n(R) =Mn×n(R) −→ Tf(A)M
sym
n×n(R) =M sym

n×n(R)

is given by

dAf(B) = ATB +BTA = (ATB) + (ATB)T .
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Given A ∈ O(n) and any symmetric matrix C, let

B =
1

2
AC.

Since A−1 = AT , we have dAf(B) = C. Therefore, dAf is surjective for all
A ∈ O(n), so In is a regular value.

We have

SU(n) =
{
A ∈ U(n) : detA = 1

}
, U(n) =

{
A ∈Mn×n(C) : A†A = In

}
,

where A† = A
T
is the Hermitian transpose. First, U(n) is the preimage

U(n) = f−1(In)

under the smooth map

f : Mn×n(C) −→ Herm(n), A 7→ A†A,

where Herm(n) ⊂Mn×n(C) denotes the real vector space of Hermitian ma-
trices. The proof that In is a regular value of f is very similar to the case
of O(n).

Furthermore, since det : Mn×n(C) −→ C is smooth, it restricts to a smooth
map det : U(n) −→ S1 ⊂ C. We aim to show that 1 is a regular value of the
latter, i.e., dA det ̸= 0 for all A ∈ U(n).

By Jacobi’s formula for the derivative of the determinant, we have

dA det(B) = det(A) tr(A−1B) ∀ A ∈ U(n).

By the second statement in Lemma 8.9,

TAU(n) =
{
B ∈Mn×n(C) : A†B + (A†B)† = 0

}
.

Choose a skew-Hermitian matrix D such that tr(D) = i, and let B = AD.
Then, for A ∈ SU(n),

dA det(B) = i ∈ T1S
1 ∼= R · i ⊂ C.

Therefore, 1 is a regular value of the determinant function on U(n), and
SU(n) is a smooth real codimension-one submanifold of U(n).

Remark 8.17. One can obtain SU(n) as a level set in one shot by consid-
ering the map

f : Mn×n(C) −→ Herm(n)× C, A 7→
(
A†A, det(A)

)
.

However, (In, 1) is not a regular value, since f is a constant rank map of
rank

r = dimR(Herm(n)× C)− 1.
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The action of SU(2) on C2 preserves the unit sphere S3 ⊂ C2. For every
(a, b) ∈ S3 ⊂ C2, the matrix

A =

[
a −b
b a

]
lies in SU(2), and its action on S3 sends the point (1, 0) to (a, b). Thus, the
action of SU(2) on S3 is transitive.

It remains to show that the stabilizer (isotropy group) of this action is trivial.
By transitivity, it suffices to check the stabilizer at the point (1, 0). Suppose

A ·
[
1
0

]
=

[
1
0

]
, A =

[
a b
c d

]
∈ SU(2).

Then a = 1 and c = 0. Since A is unitary with determinant 1, these
conditions imply b = 0 and d = 1, so A = I2.

We conclude that the action is free and transitive, so SU(2) ∼= S3 as smooth
manifolds. More precisely, every matrix in SU(2) is of the form

A =

[
a −b
b a

]
with (a, b) ∈ S3. □

Exercise 8.12. With the standard embeddings

ι1 : S
m −→ Rm+1 and ι2 : S

n −→ Rn+1,

the product embedding

ι1 × ι2 : S
m × Sn −→ Rm+n+2

lands in the sphere Sm+n+1(
√
2) ⊂ Rm+n+2 of radius

√
2. However, the

image of ι1 × ι2 does not cover the whole sphere; for instance, it misses the
point p = (

√
2, 0, . . . , 0).

Stereographic projection from p identifies Sm+n+1(
√
2) \ {p} with Rm+n+1.

Composing this projection with the product embedding gives the desired
embedding of Sm × Sn into Rm+n+1. □

Exercise 8.13.

We have

d(x,y,z)f =


y x 0
0 z y
z 0 x
2x −2y 0
2x 2y 2z

 .
If xyz ̸= 0, then the top 3× 3 minor is invertible, so d(x,y,z)f is full rank.
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If x = 0, then

d(0,y,z)f =


y 0 0
0 z y
z 0 0
0 −2y 0
0 2y 2z

 .
If y ̸= 0, the minor y 0 0

0 z y
0 −2y 0


is full rank. If y = 0 and z ̸= 0, the minor0 z 0

z 0 0
0 0 2z


is full rank.

The case d(x,0,z)f is similar by symmetry. Finally, we consider

d(x,y,0)f =


y x 0
0 0 y
0 0 x
2x −2y 0
2x 2y 0

 ,
and we may assume x, y ̸= 0, in which case the minor 0 0 x

2x −2y 0
2x 2y 0


is full rank. We conclude that f is an immersion. Since f is defined on R3

and f |S2 maps into R4 (because x2 + y2 + z2 − 1 = 0), the restriction

f |S2 : S2 −→ R4, (x, y, z) 7→ (xy, yz, zx, x2 − y2)

is also an immersion.

Note that f(x, y, z) = f(−x,−y,−z), and since immersion is a local prop-
erty, f |S2 descends to an immersion

f : RP2 = S2/Z2 −→ R4.

For compact manifolds M , to show that f : M → N is an embedding, it
suffices to prove that it is a one-to-one immersion. Thus, it remains to show
that

f |S2 : S2 → R4

is 2-to-1 in order to conclude that f : RP2 → R4 is one-to-one.
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Suppose

(xy, yz, zx, x2 − y2) = (a, b, c, d),

and assume abc ̸= 0. Then we can solve:

x2 =
ac

b
, y2 =

ab

c
, z2 =

bc

a
.

So (x, y, z) is determined by (a, b, c) up to an overall sign. Choosing one of
the two possible signs for x uniquely determines y and z.

If exactly one of x, y, z is zero, then exactly two of a, b, c are zero. If exactly
two of x, y, z are zero, then all of a, b, c are zero. In each case, fixing the
sign of one nonzero coordinate determines the others uniquely. Thus, f |S2

is 2-to-1, and f is an embedding. □

Exercise 8.14. The equation is written in cylindrical coordinates (r, θ, z)
and is independent of θ. In each fixed θ-plane, the equation (r−a)2+z2 = b2

describes a circle of radius b. Therefore, the surface M is diffeomorphic to
S1 × S1.

More precisely, in Euclidean coordinates, the map

h : S1×S1 −→ R3, (eiθ, eiφ) 7−→
(
(a+b cosφ) cos θ, (a+b cosφ) sin θ, b sinφ

)
is a one-to-one immersion (hence an embedding) into R3, whose image is
the surface M .

□

Exercise 8.15. Every plane V ⊂ R4 is the span of two linearly independent
(column) vectors v1, v2. Putting them together, we obtain a 4 × 2 matrix
A = A(v1, v2). Different bases (v1, v2) of V are related by the right action
of GL(2,R) on A. Therefore,

Gr2(R4) = {A ∈M4×2(R) : rank(A) = 2}/GL(2,R).

The function f : M4×2(R) → R6 descends to a well-defined function

f : Gr2(R4) −→ RP5,

[A] 7−→
[
det(A12) : det(A13) : det(A14) : det(A23) : det(A24) : det(A34)

]
,

where [A] denotes the class of A in the quotient.

We aim to show that f is an embedding, i.e., a one-to-one immersion. For
every A, there exist indices i < j such that det(Aij) ̸= 0. Therefore, there
is a unique representative of [A] such that Aij = I2. By symmetry, we may
assume (i, j) = (1, 2); the other cases are similar. If A12 = I2, then

A =

[
1 0 a b
0 1 c d

]
,
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and

f([A]) =
[
1 : c : d : −a : −b : ad− bc

]
.

In the terminology of (2.8) and (2.11):

• [A] belongs to the domain of the chart φ12 : U12 → V12 ∼=M2×2(R)
on Gr2(R4);

• f([A]) lies in the domain of the chart φ1 : U1 → V1 on RP5;

• and the composition φ1 ◦ f ◦ φ−1
12 : M2×2(R) → R5 is the smooth

embedding

A =

[
a b
c d

]
7−→ (c, d, a, b, ad− bc).

Since f
−1

(U1) is precisely U12, we conclude that f is a smooth embedding.

Remark 8.18. The construction above also works over C and generalizes
to define embeddings

Grk(Rn) −→ RP(
n
k)−1 and Grk(Cn) −→ CP(

n
k)−1.

□

Exercise 8.16. The real or complex curve C is the 0-level set of the function
P (x, y) = y2 − (x3 + ax+ b). We have

dP = 2y dy − (3x2 + a) dx.

Therefore, 0 is a critical value if and only if there is x0 such that

3x20 + a = 0 and x30 + ax0 + b = 0;

in other words, x0 must be a double (or triple) root of x3 + ax+ b. Numer-
ically, the equations above imply

x20 = −a
3
⇒ x0

(
2a

3

)
+ b = 0 ⇒

x0 = − 3b

2a
⇒ 3

(
− 3b

2a

)2

= −a⇒ 27b2 + 4a3 = 0.

Conversely, if 27b2 + 4a3 = 0, it is easy to check that x0 = − 3b
2a is a double

(or triple) root. (If a = b = 0, we get a triple root at x0 = 0).

If x0 is a double root, then the equation has the form y2 = (x− x0)
2(x− λ)

for some λ ̸= x0. Therefore,

• if we are working over R and λ < x0, then near x = x0, C has two
local intersecting branches y = ±(x−x0)

√
x− λ; i.e., C is singular

(not a manifold).
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• if we are working over R and λ > x0, then (x0, 0) is an isolated
point of C, i.e., C is degenerate at that point (not a 1-dimensional
manifold).

• if we are working over R and x0 is a triple root, then C has a cusp
singularity at (x0, 0) (again, not a manifold).

• if we are working over C and x0 is a double root, then again, C has
two local intersecting branches.

• if we are working over C and x0 is a triple root, then C has a cusp
singularity at (x0, 0).

Recall that CP2 = C2 ∪ CP1, where C2 is the set of points [1 : x1 : x2] and
CP1 is the set of points [0 : x1 : x2]. In other words, CP2 can be covered by
three charts

φi : Ui → Vi, φi

(
[X0 : X1 : X2]

)
=

(
xj =

Xj

Xi

)
j ̸=i

, for i = 0, 1, 2,

where we think of U0 as C2, and
(
U1∪U2

)
\U0 as the CP1 added to compactify

it. In order to understand the closure C of C in CP2, we need to understand
its equation in terms of the chart variables on U1 and U2 to find the extra
solution points that do not belong to U0. We then study whether C is a
manifold near those points.

To visually distinguish the coordinates on V0, V1, and V2, let

• x1 =
X1
X0

and x2 =
X2
X0

denote the coordinates on V0;

• y0 =
X0
X1

and y2 =
X2
X1

denote the coordinates on V1;

• z0 =
X0
X2

and z1 =
X1
X2

denote the coordinates on V2;

Switching the notation from (x, y) to (x1, x2) for C, we are starting from
the equation

(8.3) x22 − (x31 + ax1 + b) = 0

on V0, and we want to find its equivalent on V1 and V2.

The coordinates (x1, x2) and (y0, y2) are related by

x1 =
1

y0
, x2 =

y2
y0
.

Substituting these into (8.3) and multiplying by y30 gives

y0y
2
2 − (1 + ay20 + by30) = 0.

The points in C ∩ (U1 \ U0) correspond to setting y0 = 0, which yields no
solution.
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Similarly, the coordinates (x1, x2) and (z0, z1) are related by

x1 =
z1
z0
, x2 =

1

z0
.

Substituting these into (8.3) and multiplying by z30 gives

z0 − (z31 + az1z
2
0 + bz30) = 0.

The points in C ∩ (U2 \ U0) correspond to setting z0 = 0, which yields the
solution (z0, z1) = (0, 0). Therefore,

C = C ∪ {[0 : 0 : 1]}.

Let us now understand the behavior of C near [0 : 0 : 1]. Differentiating the
equation above in z-coordinates and evaluating at (0, 0) gives

(1− 2az1z0) dz0 + (3z21 + az20) dz1
∣∣
(0,0)

= dz0 ̸= 0.

Therefore, C is non-singular at [0 : 0 : 1].

Conclusion. If a, b ∈ C and 27b2+4a3 ̸= 0, then C ⊂ CP2 is a holomorphic
manifold of complex dimension one – that is, a closed Riemann surface when
viewed as a real manifold. Determining the genus of this surface requires
tools that will be introduced in the next book.

□



Chapter 9

Transversality

In this lecture, we gradually generalize our previous results on regular values
and regular level sets to their most general form. First, we consider the
preimage of a larger submanifold than just a point.

Definition 9.1. Suppose f : M −→ N is a smooth map and Z ⊂ N is a
smooth submanifold. We say that f is transverse to Z if

dpf(TpM) + Tf(p)Z = Tf(p)N ∀ p ∈ f−1(Z).

In particular, we say that two submanifolds Z1, Z2 ⊂ N are transverse, and
write Z1 ∩| Z2, if the inclusion map ι1 : Z1 −→ N is transverse to Z2. In
other words,

TpZ1 + TpZ2 = TpN ∀ p ∈ Z1 ∩ Z2.

Proposition 9.2. Suppose f : M −→ N is a smooth or holomorphic map,
and Z ⊂ N is a submanifold of the corresponding regularity class. If f is
transverse to Z, then the preimage Y = f−1(Z) is a smooth or holomorphic
submanifold of M , respectively. Moreover, codimMY = codimNZ, and

TpY = dpf
−1(Tf(p)Z) = ker

(
dpf : TpM −→ Tf(p)N/Tf(p)Z

)
∀ p ∈ Y.

In particular, if Z1, Z2 ⊂ N are transverse submanifolds, then Z1 ∩ Z2 is
also a submanifold of codimension codimNZ1 + codimNZ2.

Proof. For each p ∈ Y , choose an open neighborhood W of p in M and a
chart φ : U −→ V ⊂ A around f(p) in N such that

• φ(U ∩ Z) = V ∩ A′ for some affine subspace A′ ⊂ A as in Defini-
tion 8.4, and

• f(W ) ⊂ U .

79
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Then,

(π ◦ φ ◦ f)−1(0) = Y ∩W,
where π : A −→ A/A′ is the quotient projection map.

By the transversality assumption, 0 is a regular value of the map

π ◦ φ ◦ f : W −→ A/A′.

It then follows from Lemma 8.9 that Y ∩W is a smooth or holomorphic
submanifold of the expected dimension. Since this holds in a neighborhood
of every p ∈ Y , we conclude that Y is a smooth or holomorphic submanifold
of M of the expected codimension. □

Next we discuss the full generalization of Lemma 8.9 leading to the concept
of fiber product.

Definition 9.3. For i = 1, 2, suppose fi : Mi −→ N are smooth maps. We
say that f1 is transverse to f2, and write f1 ∩| f2, if

dp1f1(Tp1M1) + dp2f2(Tp2M2) = TqN,

∀ (p1, p2) ∈M1 ×M2 with f1(p1) = f2(p2) = q ∈ N.

Theorem 9.4. For i = 1, 2, suppose fi : Mi −→ N are smooth or holomor-
phic maps, and assume f1 ∩| f2. Then the fiber product

M1 f1×f2 M2
..=
{
(p1, p2) ∈M1 ×M2 : f1(p1) = f2(p2)

}
⊂M1 ×M2

is a smooth or holomorphic submanifold of M1×M2, respectively. Moreover,

dim
(
M1 f1×f2 M2

)
= dimM1 + dimM2 − dimN,

and

T(p1,p2)
(
M1 f1×f2M2

)
=
{
(v1, v2) ∈ Tp1M1×Tp2M2 : dp1f1(v1) = dp2f2(v2)

}
.

Proof. It is clear that M1 f1×f2 M2 is the preimage under f1 × f2 of the
diagonal subset N ∼= ∆N ⊂ N ×N . Given any atlas A = {φα : Uα −→ Vα ⊂
Aα}α∈I , we obtain the product atlas

A×A ..= {φα × φβ : Uα × Uβ −→ Vα × Vβ}α,β∈I
which defines the product smooth or holomorphic structure on N ×N . For
every α ∈ I, we have

φα × φα

(
(Uα × Uα) ∩∆N

)
=
(
Vα × Vα

)
∩∆Aα ,

where ∆Aα is the diagonal subspace in Aα × Aα. Therefore, ∆N ⊂ N ×N
is a smooth or holomorphic submanifold, depending on the context.

Note that

T(q,q)∆N = {(w,w) ∈ T(q,q)(N ×N) : w ∈ TqN}.
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Claim. The product map f1 × f2 is transverse to ∆N if and only if f1 is
transverse to f2. Therefore, the theorem follows from Proposition 9.2.

Proof of Claim. Suppose f1 is transverse to f2, i.e.,

dp1f1(Tp1M1) + dp2f2(Tp2M2) = TqN,

∀ (p1, p2) ∈M1 ×M2 with f1(p1) = f2(p2) = q ∈ N.

We aim to show that f1 × f2 is transverse to ∆N . For any

(w1, w2) ∈ T(q,q)(N ×N) ∼= TqN ⊕ TqN,

by assumption, there exist

v1 ∈ Tp1M1 and v2 ∈ Tp2M2

such that
dp1f1(v1) + dp2f2(−v2) = w1 − w2.

Define
u ..= w1 − dp1f1(v1) = w2 − dp2f2(v2) ∈ TqN.

Then
d(p1,p2)(f1 × f2)(v1, v2) + (u, u) = (w1, w2).

Therefore,

d(p1,p2)(f1 × f2)(T(p1,p2)(M1 ×M2)) + T(q,q)∆N = T(q,q)(N ×N),

∀ q ∈ N, (p1, p2) ∈ (f1, f2)
−1(q, q);

i.e., f1 × f2 is transverse to ∆N . The converse follows similarly. □ □

Example 9.5. Here is an important example of the concepts above that
will eventually lead to the definition of the Euler characteristic, once we
introduce the notion of orientation on manifolds.

For every smooth or holomorphic manifoldM , its tangent bundle, considered
as a smooth or holomorphic manifold of twice the dimension, contains a
canonical copy of M as the zero-section. We denote this zero-section by
M0 ⊂ TM . In other words, M is embedded into TM via the map x 7→ 0x ∈
TxM , and M0 denotes the image of this embedding.

More generally, any section of the tangent bundle – that is, any vector
field ξ : M → TM – defines an embedding of M into TM . That, this is a
smooth or holomorphic embedding follows from differentiating π ◦ ξ = id.
We say that ξ is a transverse section (or transverse vector field) if it
is transverse to the zero-section M0 ⊂ TM , in the sense of Definition 9.1.
In this case, the set of points at which ξ vanishes, namely ξ−1(M0), is a
submanifold of codimension

codimTM (M0) = dimM.

That is, ξ−1(M0), often simply denoted ξ−1(0), is a discrete set of isolated
points (finite if M is compact).
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In local coordinates, the condition of transversality for ξ has an explicit form.
Suppose (x1, . . . , xm) are local coordinates on an open subset U ⊂M . Then
ξ takes the form

ξ(x) = (x, y(x)) ∈ TRm ∼= Rm × Rm,

meaning that

ξ(x) =
(
x,

m∑
i=1

yi(x) ∂xi

)
.

Therefore, the derivative dξ is the matrix

dξ =

[
Im[
∂yj
∂xi

]] .
Since the tangent space to the zero-section TM0 corresponds to the span of
the columns of [

Im
0m

]
,

we conclude that a point p ∈ ξ−1(0) is a transverse zero if and only if the

matrix
[
∂yj
∂xi

(p)
]
of partial derivatives of the coefficients of ξ at p is non-

singular.

Exercise 9.6. Recall that the 2-sphere S2 ⊂ R3 can be covered by two
charts φ± : U± → V± ∼= R2, with transition map

φ+7→− : V+,− = R2\{0} → V−,+ = R2\{0}, x = (x1, x2) 7→ (y1, y2) =
1

|x|2
(x1, x2).

In the solution to Exercise 6.10, we showed that the local vector fields

ξ+ = x1∂x1 + x2∂x2 on V+

and

ξ− = −(y1∂y1 + y2∂y2) on V−

are compatible on the overlap and define a global vector field ξ on S2. Is
this vector field transverse to the zero section?

Exercise 9.7. In the solution to Exercise 6.12, we showed that every holo-
morphic vector field ξ on CP1 = C ∪ {∞} is the extension to ∞ of a vector
field

ξ0 = (a+ bz + cz2)∂z

on C. For which a, b, c ∈ C is ξ transverse to the zero section? How many
zeros does it have?
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Exercise 9.8. Suppose f : M → M is an automorphism of the smooth
manifold M . The graph Mf of f is the image of the embedding

M →M ×M, p 7→ (p, f(p)) ∀ p ∈M.

For instance, the diagonal ∆M is the graph of the identity map. Show that
Mf and ∆M are transverse if and only if, for every fixed point p of f , the
differential dpf : TpM → TpM has no eigenvalue equal to 1. Note that if
Mf and ∆M are transverse, the fixed points of f will be isolated, since
dim(∆M ∩Mf ) = 0.

Exercise 9.9. Let f : C → C2 be the holomorphic map

z 7→ (za, zb)

for some positive integers a and b with gcd(a, b) = 1. Show that the smooth
map f is transverse to S3 ⊂ C2. What is the intersection of the image of f
with S3?

Exercise 9.10. Show that the following subsets of CP2 are holomorphic
submanifolds:

Q1 =
{
[X0 : X1 : X2] ∈ CP2 : X2

0 +X2
1 +X2

2 = 0
}
,

Q2 =
{
[X0 : X1 : X2] ∈ CP2 : X0X1 +X1X2 +X2X0 = 0

}
.

Is Q1 transverse to Q2. What can you say about Q1 ∩Q2?
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Solutions to exercises

Exercise 9.6. On V+ and V−, the vector fields ξ+ and ξ− vanish only
at the origin of V+ and V−, respectively. Under the chart maps φ±, these
correspond to two distinct points on S2, namely the north and south poles.
So, the global vector field ξ has two zeros.

To determine whether ξ is transverse to the zero section, we examine the
matrix of partial derivatives of the coefficients of ξ in the corresponding
charts at each zero.

At the origin of V+, the matrix of partial derivatives of the coefficients of ξ+
is [

∂x1
∂x1

∂x1
∂x2

∂x2
∂x1

∂x2
∂x2

]
= I2.

Similarly, at the origin of V−, the matrix of partial derivatives of the coeffi-
cients of ξ− is −I2.

Therefore, ξ is a transverse section of the tangent bundle. . □

Exercise 9.7. Recall that CP1 can be covered by two copies of C, V0 = C
and V1 = C, with the following gluing data:

• V0,1, V1,0 = C∗;

• the transition map φ07→1 : C∗ → C∗ is given by z 7→ w = z−1, where
z is the coordinate on V0 and w is the coordinate on V1.

As we showed in the solution to Exercise 6.12, the local holomorphic vector
field ξ0 = (a+ bz + cz2)∂z on V0 matches the local holomorphic vector field
ξ1 = −(aw2 + bw + c)∂w on V1.

If c ̸= 0, then w = 0 is not a zero of ξ1, and therefore the only zeros are
on V0. Furthermore, the quadratic polynomial a + bz + cz2 has either two
distinct roots or a double root, depending on whether b2−4ac ̸= 0 or not. If
it has a double root z0, then both the polynomial and its derivative vanish
at z0, so ξ0 (and hence ξ) is not transverse to the zero section.

Symmetrically, if a ̸= 0, then z = 0 is not a zero of ξ0, and therefore the
only zeros are on V1. The polynomial aw2 + bw + c again has either two
distinct roots or a double root depending on whether b2 − 4ac ̸= 0. If it has
a double root w0, then both the polynomial and its derivative vanish at w0,
so ξ1 (and hence ξ) is not transverse to the zero section.

Finally, if a = c = 0 and b ̸= 0, then ξ0 and ξ1 vanish at z = 0 and w = 0,
respectively, and both zeros are transverse.

We conclude that ξ is a transverse section if and only if b2 − 4ac ̸= 0. In
this case, ξ has two distinct zeros; otherwise, it has a non-transverse double
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zero. □

Exercise 9.8. Recall that

T(p,p)∆M = {(v, v) ∈ T(p,p)(M ×M) : v ∈ TpM}.

Also,

T(p,f(p))Mf = image
(
d(p,p)(id× f)

)
=
{
(v, dpf(v)) ∈ T(p,f(p))(M ×M) : v ∈ TpM

}
.

Clearly, Mf ∩∆M corresponds to the subset Fix(f) ⊂ M of fixed points of
f .

If Mf and ∆M are transverse, then by Definition 9.1,

T(p,p)Mf + T(p,p)∆M = T(p,p)(M ×M),

for every p ∈ Fix(f). Since both summands on the left have dimension
m = dimM , and the right-hand side has dimension 2m, the equation above
implies

T(p,p)Mf ∩ T(p,p)∆M = 0.

In other words, for 0 ̸= v ∈ TpM , the vector (v, dpf(v)) ∈ T(p,p)Mf does not
belong to T(p,p)∆M ; that is, v ̸= dpf(v) for all v ̸= 0.

We conclude that the differential dpf : TpM → TpM has no eigenvalue equal
to 1. The argument is reversible, giving the converse direction as well. □

Exercise 9.9. Since S3 is defined by

g(z1, z2) = |z1|2 + |z2|2 = z1z1 + z2z2 = 1,

the tangent space T(z1,z2)S
3 is the kernel of the real linear map

dg = z1 dz1 + z1 dz1 + z2 dz2 + z2 dz2.

The derivative of f ,

dzf : TzC → T(za,zb)C2,

maps ∂z to aza−1∂z1 + bzb−1∂z2 .

By Definition 9.1, we want to show the equality of real vector spaces

(9.1) image(dzf) + T(za,zb)S
3 = T(za,zb)C2,

whenever |z|2a + |z|2b = 1 (in particular, z ̸= 0 on image(f) ∩ S3).

For z ̸= 0, we compute

dg
(
aza−1∂z1 + bzb−1∂z2

)
= aza−1za + bzb−1zb = z−1(a|z|2a + b|z|2b) ̸= 0.
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Therefore, for z ∈ f−1(S3), we have

aza−1∂z1 + bzb−1∂z2 /∈ T(za,zb)S
3,

implying (9.1).

The equation |z|2a + |z|2b = 1 defines the circle S1(r) in C of radius r such
that r2a+r2b = 1. By transversality and since f is an embedding away from
0 (to prove that it is one-to-one we need gcd(a, b) = 1), the intersection of
the image of f with S3 is a 1-dimensional submanifold L of S3. The embed-
ding f |C\{0} maps S1(r) onto L. Therefore, L is a knot in S3 that depends
on a and b. □

Exercise 9.10. Recall that X0, X1, X2 are not actual coordinates on CP2,
and the equations defining Q1 and Q2 are not functions on CP2. To describe
them as level sets, we must restrict to charts where the equations become
actual functions.

Recall from the solution to Exercise 8.16 that CP2 can be covered by three
charts

φi : Ui → Vi ∼= C2, φi

(
[X0 : X1 : X2]

)
=

(
xj =

Xj

Xi

)
j ̸=i

, for i = 0, 1, 2.

To visually distinguish the coordinates on V0, V1, and V2, let

• x1 =
X1
X0

and x2 =
X2
X0

denote the coordinates on V0;

• y0 =
X0
X1

and y2 =
X2
X1

denote the coordinates on V1;

• z0 =
X0
X2

and z1 =
X1
X2

denote the coordinates on V2;

The coordinates (x1, x2) and (y0, y2) are related by

x1 =
1

y0
, x2 =

y2
y0
.

Similarly, the coordinates (x1, x2) and (z0, z1) are related by

x1 =
z1
z0
, x2 =

1

z0
.

The equations of φ0(Q1 ∩U0), φ1(Q1 ∩U1), and φ2(Q1 ∩U2) in V0, V1, and
V2, respectively, are

1 + x21 + x22 = 0,

y20 + 1 + y22 = 0,

z20 + z21 + 1 = 0.

So they all represent the same equation f(x, y) = 1+x2+ y2 = 0 in C2. We
compute

df = 2x dx+ 2y dy.
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This derivative vanishes only at (x, y) = (0, 0), which does not satisfy
f(x, y) = 0. Therefore, 0 is a regular value of f , and the level set {1 +
x2 + y2 = 0} defines a holomorphic submanifold of C2. We conclude that
Q1 is a one-dimensional holomorphic submanifold of CP2.

Similarly, the equations of φ0(Q2∩U0), φ1(Q2∩U1), and φ2(Q2∩U2) in V0,
V1, and V2, respectively, are

x1 + x1x2 + x2 = 0,

y0 + y2 + y0y2 = 0,

z0z1 + z1 + z0 = 0,

so they all represent the same equation g(x, y) = x+ xy + y = 0 in C2. We
compute

dg = (1 + y) dx+ (1 + x) dy.

This derivative vanishes only at (x, y) = (−1,−1), which does not satisfy
g(x, y) = 0. Hence, 0 is a regular value of g, and the level set {x+xy+y = 0}
defines a holomorphic submanifold of C2. We conclude that Q2 is a one-
dimensional holomorphic submanifold of CP2.

To determine whether Q1 and Q2 intersect transversely, it suffices to check
their intersection in one chart at a time. Consider their intersection in V0:

(x+ xy + y = 0) and (1 + x2 + y2 = 0)

in C2. First, solve

x+ xy + y = 0 ⇔ (x+ 1)(y + 1) = 1.

Setting u = x+ 1 and thus y + 1 = 1/u, the second equation becomes

1 + (u− 1)2 +

(
1

u
− 1

)2

= 0 ⇔ u4 − 2u3 + 3u2 − 2u+ 1 = 0.

The roots of this quartic are

µ =
1± i

√
3

2
,

each with multiplicity 2. The presence of multiplicities indicates that Q1

and Q2 do not intersect transversely. The corresponding points in (x, y)-
coordinates are

(x, y) = pµ ..=
(
µ− 1, µ− 1

)
.

At each point pµ, we compute the differentials:

d(x+ xy + y)
∣∣
pµ

= (1 + y) dx+ (1 + x) dy
∣∣
pµ

= µdx+ µdy,

d(1 + x2 + y2)
∣∣
pµ

= 2x dx+ 2y dy
∣∣
pµ

= (2µ− 2) dx+ (2µ− 2) dy.

These two differentials are proportional because µ = −1
2 (2µ−2). Therefore,

TpµQ1+TpµQ2 = ker
(
µdx+µdy

)
+ker

(
(2µ−2) dx+(2µ−2) dy

) ∼= C ̸= TpµC2.
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The calculations in other two charts are identical. In conclusion, as the
calculations indicate, Q1 and Q2 non-transversely intersect at two points
(with multiplicity two), each lying in the domain of all three charts.

□



Chapter 10

Constant Rank and
Whitney Embedding
Theorems

In this lecture, we’ll discuss the proof of the Constant Rank Theorem and
then state and prove Whitney’s Embedding Theorem regarding the embed-
ding of smooth manifolds into Euclidean spaces.

Constant Rank Theorem is a local statement, and manifolds are locally
Euclidean. Therefore, we need to prove the following local result.

Theorem 10.1. Suppose f : U → U ′ is a smooth (respectively, holomorphic)

map of constant rank r between open subsets of Rm and Rm′
(respectively,

Cm and Cm′
). Then, for every p ∈ U , after possibly shrinking U and U ′

around p and f(p), there exist coordinate systems1 (x1, . . . , xm) on U and
(y1, . . . , ym′) on U ′ such that

f(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0︸ ︷︷ ︸
if r<m′

).

The proof uses the Inverse Function Theorem stated below, which we will
not prove here.

1This is the pedestrian word for charts.
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Theorem 10.2 (Inverse Function Theorem). Suppose f : U → U ′ is a
smooth (respectively, holomorphic) map between open subsets of Rm (re-
spectively, Cm). If the linear map

dpf : TpU → Tf(p)U
′

is invertible, then f is smoothly (respectively, holomorphically) invertible
near p. In other words, after possibly shrinking U and U ′ around p and f(p),
there exists g : U ′ → U such that g is smooth (respectively, holomorphic) and
g ◦ f = id.

Exercise 10.3. Deduce the holomorphic version of Inverse Function Theo-
rem from the smooth version.

Proof of Theorem 10.1. Starting with the standard coordinates on Rm

and Rm′
(respectively, Cm and Cm′

), and after possibly shrinking U and U ′,
the goal is to construct diffeomorphisms (respectively, biholomorphisms)

φ : U → V ⊂ Rm, φ′ : U ′ → V ′ ⊂ Rm′

(respectively, φ : U → V ⊂ Cm, φ′ : U ′ → V ′ ⊂ Cm′
) such that

φ′ ◦ f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0︸ ︷︷ ︸
if r<m′

).

Without loss of generality, we may assume p = 0 ∈ U and f(p) = 0 ∈ U ′.
Also, after a linear change of coordinates, we may assume

d0f =

[
Ir 0
0 0

]
.

If
f(x) = (f1(x), . . . , fm′(x)),

define

φ : U → Rm, φ(x1, . . . , xm) = (f1(x), . . . , fr(x), xr+1, . . . , xm).

Then the derivative at the origin is

d0φ =

[
Ir ⋆
0 Im−r

]
.

Therefore, by the Inverse Function Theorem, after possibly shrinking U
around 0, the map φ is a diffeomorphism (respectively, biholomorphism)
from U onto some open set V ⊂ Rm (respectively, V ⊂ Cm). By construc-
tion,

f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, hr+1(x), . . . , hm′(x)),

for some smooth (respectively, holomorphic) functions hr+1, . . . , hm′ .

Since
rank d(f ◦ φ−1) = rank df = r,
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and

d(f ◦ φ−1) =

[
Ir 0

⋆
[
∂hi
∂xj

]
r<i≤m′, r<j≤m

]
,

we conclude that [
∂hi
∂xj

]
r<i≤m′, r<j≤m

≡ 0.

In other words, for fixed (x1, . . . , xr), the function hi(x1, . . . , xr, xr+1, . . . , xm)
is constant in (xr+1, . . . , xm).

After possibly shrinking U ′ around the origin, define

φ′ : U ′ → Rm′
,

(y1, . . . , ym′) 7→
(
y1, . . . , yr, (yi − hi(y1, . . . , yr, 0, . . . , 0))r<i≤m′

)
.

Then the derivative at the origin is

d0φ
′ =

[
Ir 0
⋆ Im′−r

]
.

Hence, by the Inverse Function Theorem, after possibly shrinking U ′, the
map φ′ is a diffeomorphism (respectively, biholomorphism) from U ′ onto

some open set V ′ ⊂ Rm′
(respectively, V ′ ⊂ Cm′

).

It is now easy to check that

φ′ ◦ f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

□

In previous lectures, we learned a method for constructing interesting man-
ifolds inside simple ambient spaces such as Rn and Cn by considering level
sets of non-trivial functions defined on these spaces. The following theorem
shows that, in fact, any smooth manifold can be embedded into some Rn for
sufficiently large n. The holomorphic analogue of this statement is certainly
not true, since the only holomorphic functions on closed holomorphic mani-
folds are the constant functions. However, some holomorphic manifolds can
be embedded into CPn or open subsets of that, and these are called alge-
braic varieties. Algebraic geometry uses algebraic methods to study such
holomorphic manifolds and generalizes them extensively to include a wide
range of singular spaces and more abstractly defined geometric objects.

Theorem 10.4. Any smooth m-manifold M can be embedded into R2m.
Moreover, if m ≥ 2, it can be immersed into R2m−1.

We will not prove this full version in this lecture and instead refer the reader
to [Hir76, Theorems 8.4.1, 8.4.2], as we do not need it here and the proof is
quite long and technical. Instead, we present the following simplified version,
whose proof is one of several applications of partition of unity. The proof of
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Theorem 10.4 will rely on this simpler version, along with an exhaustion of
the manifold by compact subsets and some dimension reduction arguments.

Theorem 10.5 (Simplified Version of the Whitney Embedding Theorem).
Every compact smooth manifold M admits an embedding into Rk for some
sufficiently large k.

Proof. Since the manifold is compact, we need to build a one-to-one immer-
sion. Around every point p ∈ M , there is a chart φp : Up −→ Vp ⊂ Rm (or
Hm) such that φp(p) = 0, Vp = B3(0) (or B3(0)∩Hm). Let ϱp : Up −→ [0, 1]
be a smooth function such that

ϱp|φ−1
p (B1(0))

≡ 1 and ϱp|Up−φ−1
p (B2(0))

≡ 0.

By the second property, each φp trivially extends to a function on the entire
M . Note that

ϱp · φp : M −→ Rm

is well-defined, smooth, and identically equal to 0 ∈ Rm outside φ−1
p (B2(0)).

SinceM is compact, we can choose finitely many of these charts, say indexed

by {p1, . . . , pℓ}, such that
{
φ−1
pi (B1(0))

}ℓ
i=1

is an open cover of M .

Define

f =
(
ϱp1 , . . . , ϱpℓ , φp1 · φp1 , . . . , ϱpℓ · φpℓ

)
: M −→ Rℓ(m+1).

Suppose f(q1) = f(q2). By assumption, there exists i = 1, . . . , ℓ such that
q1 ∈ φ−1

pi (B1(0)). Therefore, ϱpi(q2) = ϱpi(q1) = 1. We conclude that

q1, q2 ∈ φ−1
pi (B2(0)) and

φpi(q1) = φpi(q2).

Therefore, q1 = q2. We have shown that f is one-to-one.

Moreover, for every q ∈M , there exists i = 1, . . . , ℓ such that q ∈ φ−1
pi (B1(0)).

Therefore,
ϱpi · φpi(q) = φpi(q).

We conclude that f is an immersion at q (because f ◦ φ−1
pi = idRm on

B1(0)). □
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Solutions to exercises

Exercise 10.3. Without loss of generality, we may assume p = f(p) = 0.
Thus, suppose

f : U → U ′, f
(
z = (z1, . . . , zm)

)
= (f1, . . . , fm)

is a holomorphic map between open neighborhoods of 0 in Cm, and the
complex linear map

d0f : T0U → T0U
′, d0f =

[
∂fi
∂zj

(0)

]
1≤i,j≤m

is invertible. We can think of f as a smooth map between open sets of R2m

by decomposing each zj and fi into their real and imaginary parts:

f(x, y) =
(
g1(z), . . . , gm(z), h1(z), . . . , hm(z)

)
,

where
z = x+ iy, f(z) = g(z) + ih(z).

Then the real Jacobian of f with respect to the x, y-variables is

dR0 f =


[
∂gi
∂xj

(0)
]
1≤i,j≤m

[
∂gi
∂yj

(0)
]
1≤i,j≤m[

∂hi
∂xj

(0)
]
1≤i,j≤m

[
∂hi
∂yj

(0)
]
1≤i,j≤m

 .
The determinants of dR0 f and d0f are related by

det(dR0 f) = |det(d0f)|2 .
Therefore, by the smooth version of the Inverse Function Theorem, f is
locally smoothly invertible near the origin.

Since
f−1(f(z)) = z,

differentiating both sides with respect to zi gives

0 =
∂

∂zi
f−1(f(z)) =

m∑
j=1

∂f−1

∂zj

∂fj
∂zi

+

m∑
j=1

∂f−1

∂zj

∂fj
∂zi

.

Since
∂fj
∂zi

= 0, we obtain

m∑
j=1

∂f−1

∂zj

∂fj
∂zi

= 0.

Moreover, since the matrix
[
∂fj
∂zi

(0)
]
1≤i,j≤m

is invertible, we conclude

∂f−1

∂zj
= 0 ∀ 1 ≤ j ≤ m,

i.e., f−1 is holomorphic as well.





Chapter 11

Vector bundles

We have already encountered an example of a vector bundle – namely, the
tangent bundle. More generally, a vector bundle is a family of vector spaces
parametrized by the points of a manifold, such that the family is locally
trivial. The precise definition is as follows.

Definition 11.1. A continuous, smooth, or holomorphic vector bundle con-
sists of

• A pair of continuous, smooth, or holomorphic manifolds E and M ,
and a surjective map π : E −→M of the same class,

• A real or complex vector space structure on each fiber Ep = π−1(p)
for all p ∈M ,

such that, for each p ∈ M , there exists an open neighborhood U ∋ p and a
C0, smooth, or holomorphic identification (called local trivialization)

Φ: E|U = π−1(U) −→ U × F (F ∼= Rk or Ck),

that maps each fiber Ep linearly isomorphically onto {p} × F .

Example 11.2. The simplest example of a vector bundle is a trivial (i.e.,
product) bundle E = M × F , for some fixed vector space F , where π is
the projection map onto the first factor. By definition, every vector bundle
is locally trivial.

Remark 11.3. (1) There are slightly different ways to define a vector
bundle in the literature, but they all describe the same class of
objects.
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(2) Every holomorphic vector bundle has complex vector spaces as its
fibers, but there are smooth or continuous vector bundles with com-
plex vector spaces as their fibers that are not holomorphic because
M or π is not holomorphic – for instance, S1 × C −→ S1.

(3) In practice, we often assume that the open sets are domains of
chart maps φ : U −→ V ⊂ A. Since φ identifies U with V , one may
instead define Φ to be an identification between E|U and V × F
lifting the map φ; that is, a commutative diagram

E|U
π

��

Φ // V × F

��
U

φ // V .

More precisely, the composition of Φ: E|U −→ U × F and φ ×
idF : U × F −→ V × F gives the identification

(φ× idF ) ◦ Φ: E|U −→ V × F

fitting the commutative diagram above. Moreover, since π is con-
tinuous, E|U = π−1(U) is an open subset of E, and every local
trivialization E|U −→ V × F ⊂ A× F is indeed a chart on E.

(4) Similarly to Remark 1.5.2, in some examples, we may reverse the
arrows and define a local trivialization to be an identification

Φ: U × F → E|U or V × F

π

��

Φ // E|U

��
V

φ // U .

We will switch between these different perspectives whenever it
helps simplify the notation.

(5) The integer dimF (over R or C) is the same for all local trivializa-
tions (on a connected manifold) and is called the rank of vector
bundle.

Given a vector bundle E −→ M , suppose {Uα}α∈I is an open covering of
M and

Φα : E|Uα −→ Uα × Fα ∀ α ∈ I
is a collection of local trivializations. Then the transition maps

Φβ ◦ Φ−1
α : (Uα ∩ Uβ)× Fα −→ (Uα ∩ Uβ)× Fβ

are of the form (x, v) 7→ (x,Φα 7→β(x)(v)) for some x-dependent family of
linear isomorphisms

Φα 7→β : Uα ∩ Uβ −→ Isom(Fα, Fβ).
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Fixing an identification Fα = Rk or Ck for all α ∈ I, the latter is simply a
matrix-valued function

(11.1) Φα 7→β : Uα,β −→ GL(k,R) or GL(k,C).

Remark 11.4. If we change to the perspective of the third item in Re-
mark 11.3, then

Φα : E|Uα −→ Vα × Fα ∀ α ∈ I
and the transition maps

Φβ ◦ Φ−1
α : Vα,β × Fα −→ Vβ,α × Fβ

are lifts of

φα 7→β
..= φβ ◦ φ−1

α : Vα,β −→ Vβ,α

mapping (x, v) to (φα 7→β(x),Φα 7→β(x)(v)) such that

Φα 7→β : Vα,β −→ Isom(Fα, Fβ)

is a family of linear isomorphisms. We will switch between these two per-
spectives whenever it helps simplify the notation. In the following, we use
the second point of view.

In Section 4, we learned that we can ignore the chart maps and focus on the
transition functions to construct M as a quotient space obtained by gluing
affine pieces via transition maps. The same can be done for vector bundles
as follows. This point of view will sometimes make it easier to justify why
certain examples are vector bundles. It also reveals the information needed
to characterize a vector bundle.

If a manifold is described as a quotient space

M =
∐
α∈I

Vα/ ∼, x ∼ y ⇔ x ∈ Vα,β, y ∈ Vβ,α, y = φα7→β(x),

a vector bundle E on M that is locally trivial on the image of each Vα is a
manifold of a similar qoutient form
(11.2)

E =
∐
α∈I

(Vα × Fα)/ ∼, such that (x, v) ∼ (y, w) ⇔

(x, v) ∈ Vα,β × Fα, (y, w) ∈ Vβ,α × Fβ, (y, w) =
(
φα 7→β(x),Φα 7→β(x)(v)

)
,

where, for each x,

Φα 7→β(x) ∈ Isom(Fα, Fβ)

is a linear isomorphism between Fα and Fβ. In other words, Φα7→β is a
continuous, smooth, or holomorphic map

Φα 7→β : Vα,β −→ Isom(Fα, Fβ).
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Fixing an identification Fα = Rk or Ck for all α ∈ I, the latter is simply a
matrix-valued function

Φα 7→β : Vα,β −→ GL(k,R) or GL(k,C).

These identifications are required to satisfy Φαα = idFα , for all α ∈ I, and
the cocyle condition illustrated by the commutative diagram

Vα,βγ × Fα

��

Φα7→β //

Φα7→γ

&&
Vβ × Fβ

��

Φβ 7→γ // Vγ × Fγ

��
Vα,βγ

φα7→β //

φβ 7→γ

88Vβ
φβ 7→γ // Vγ .

In other words,

(11.3) Φα7→γ(x) = Φα 7→γ(φα 7→β(x)) ◦ Φα 7→γ(x) ∀ x ∈ Vα,βγ .

By the definition of ∼, the projection maps πα : Vα × Fα −→ Vα are com-
patible with respect to ∼ and patch together to define the projection map
π : E −→M . Also, since M is Hausdorff by assumption, the quotient space
(11.2) is automatically Hausdorff.

Just as in the example of tangent space, every x ∈ Vα, the fiber π−1
α (x) =

{x} × Fα is a vector space identified with Fα, and if x ∈ Vα is equivalent to
y ∈ Vβ, then

Φα7→β(x) : {x} × Fα −→ {y} × Fβ

is a linear isomorphism. Therefore, each fiber of E has a well-defined vector
space structure. However, the particular identification of that with Rm or
Cm depends on the choice of a basis.

The following analogue of Lemma 4.1 holds for similar reasons.

Lemma 11.5. There is a one-to-one correspondence between vector bundles
presented as (11.2) and the pairs consisting of a vector bundle E −→M and
a collection of local trivializations over a countable atlas of M .

Example 11.6. For every smooth or holomorphic manifoldM , the tangent
bundle TM is a vector bundle of rank equal to the dimension of M . In
this example, and from the point of view of (11.2), the linear isomorphisms
Φα 7→β are simply the derivatives dφα 7→β of the transition functions φα7→β;
see Definition 6.3. The cocycle condition corresponds to the chain rule.
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Example 11.7. A line bundle is a real or complex vector bundle of rank
one. In this case, if we have Fα = R or C for all α ∈ I, then Φα7→β is simply
a nowhere-vanishing function

Φα 7→β : Vα,β −→ R∗ = Isom(R,R) or C∗ = Isom(C,C).

This makes working with line bundles much easier than with arbitrary vector
bundles, where matrix multiplications are non-commutative.

Definition 11.8. Given a vector bundle π : E −→ M , a section of E is a
map s : M −→ E such that π ◦ s = idM .

For instance, a section of tangent bundle is a vector field on the manifold.
Sections generalize the concept of graph of functions in Calculus and natu-
rally arise in many contexts such as in the example of vector fields on smooth
manifolds. As another example of their importance, recall that closed holo-
morphic manifolds do not admit any non-constant holomorphic function.
However, many of them admit complex line bundles (i.e. rank 1 vector
bundle) with plenty of sections. These sections can be used to embed the
manifold into a projective space or to define interesting holomorphic sub-
manifolds. For instance the equations in Exercise 9.10 can be realized as
sections of a holomorphic line bundle on CP2.

Definition 11.9. Given a rank r vector bundle π : E −→ M and Y ⊂
M , a frame for E|Y is a set of r sections s1, . . . , sr : Y −→ E|Y such that
{s1(p), . . . , sr(p)} is a basis for Ep at every p ∈ Y .

Lemma 11.10. Let π : E →M be a real or complex vector bundle, and let
U ⊂ M be an open set. Then there is a one-to-one correspondence between
local trivializations

(11.4) Φ: E|U → U × Rr or U × Cr

and real or complex frames for E|U .

Proof. Given a local trivialization

Φ: E|U → U × Rr or U × Cr,

define sections si(x) = Φ−1(x, ei), where ei is the i-th standard basis vector.
Then {s1, . . . , sr} forms a frame for E|U .
Conversely, given a frame {s1, . . . , sr} over U , define a local trivialization

Φ: U × Rr or U × Cr → E|U
by setting

Φ(x, (a1, . . . , ar)) =

r∑
i=1

aisi(x) ∈ Ex.
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This defines a local trivialization in the sense of Remark 11.3.4. One may
look at Φ−1 to get a local trivialization in the sense of (11.4). □

The trivialization maps we encountered above are special cases of vector
bundle homomorphisms defined below.

Definition 11.11. Let π : E → M and π′ : E′ → M ′ be vector bundles. A
vector bundle homomorphism is a commutative diagram

E
h //

π
��

E′

π′

��
M

f // M ′

such that for every point p ∈M , the induced map on the fibers

Ep → E′
f(p)

is linear. Depending on context, the pair (f, h) is assumed to be continuous,
smooth, or holomorphic.

There are several important special cases, particularly when f = id: M →
M and h satisfies one of the following:

(1) If h is injective, it is called an inclusion or embedding, and the
image of E in E′ is a sub vector bundle of E′.

(2) If h is surjective, then E′ is a quotient of E. We will study this
case in more detail in the next section.

(3) If h is an isomorphism, then E and E′ are considered isomorphic
as vector bundles.

Example 11.12. As an example of the third case, we say a vector bundle
is trivial if it is isomorphic to a product bundle M × F .

Example 11.13. Associated to every real or complex projective space P(V )
there is a tautological (real or complex) line bundle γ −→ P(V ) defined
in the following way. Every point in P(V ) corresponds to a line ℓ ⊂ V . Thus,
we define γ as a sub vector bundle of the trivial bundle P(V )× V by

(11.5) γ = {(ℓ, v) ∈ P(V )× V : v ∈ ℓ}

where the projection map γ −→ P(V ) is simply restriction to γ of the
canonical projection map P(V )× V −→ V . Let us find the transition maps
of γ and show that γ is a smooth or holomorphic vector bundle depending
on whether V is a real or complex vector space. Identifying V with Rn+1

or Cn+1, recall from (2.8) that RPn and CPn can be covered by (n + 1)
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standard charts:

φi : Ui → Vi, φi

(
[X0 : . . . : Xn]

)
=

(
xj =

Xj

Xi

)
j ̸=i

, for i = 0, . . . , n,

where Ui is the open subset defined by Xi ̸= 0 and Vi = R{0,...,̂i,...,n} ∼= Rn

or Vi = C{0,...,̂i,...,n} ∼= Cn. Also, the transition functions of the manifold are
given by

φi 7→j = φj ◦ φ−1
i

(
(xk)k ̸=i

)
= (yk)k ̸=j , where yk =

{
xk/xj if k ̸= i,

1/xj if k = i.

By definition

γ|[X0 : ... : Xn] = R · (X0 : . . . : Xn) ⊂ Rn+1 or C · (X0 : . . . : Xn) ⊂ Cn+1.

Restricted to Ui, every point can be uniquely presented as

(x0, . . . , xi−1, xi = 1, xi+1, . . . , xn),

resulting in a local trivialization

Φi : Ui × R or C −→ γ|Ui ,(
(xk)k ̸=i, t

)
−→

(
(xk)k ̸=i, t(x0, . . . xi−1, xi = 1, xi+1, . . . , xn)

)
.

It is easy to calculate that

Φi 7→j

(
(xk)k ̸=i

)
= xj .

The latter is definitely a smooth or holomorphic non-zero function on Vi,j .

Exercise 11.14. Let E′ →M be a smooth vector bundle, and let E →M
be a subvector bundle of E′. Show that, over a sufficiently small neighbor-
hood of any point inM , a local frame for E can be extended to a local frame
for E′.

Exercise 11.15. Show that the tangent bundle TS1 is a trivial vector bun-
dle, while the canonical line bundle γn → RPn is non-trivial.

Exercise 11.16. Show that the tangent bundle TS3 is trivial.

Exercise 11.17. Show that the holomorphic tangent bundle TCP1 is not
holomorphically isomorphic to the trivial complex line bundle CP1 × C.

The set of vector bundle homomorphisms between two vector bundles E −→
M and E′ −→ M ′ that lift a fixed map f : M −→ M ′ forms a module over
C0(M), C∞(M), or Chol(M), depending on the context. In other words, if
h1 and h2 are two vector bundle homomorphisms as in the diagram below

E
h1

//
h2 //

π
��

E′

π′

��
M

f // M ′

,
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and g1, g2 are two functions on M , then the linear combination g1h1 + g2h2
is also a vector bundle homomorphism that maps each v ∈ Ep to

g1(p)h1|p(v) + g2(p)h2|p(v) ∈ E′
f(p).

In the special case where M = M ′ and f = idM , we denote the space of
vector bundle homomorphisms from E to E′ lifting the identity map by
Hom(E,E′). We will later show that Hom(E,E′) is itself a vector bun-
dle over M , whose fiber over p ∈ M is the space of R- or C-linear maps
Hom(Ep, E

′
p) between the vector spaces Ep and E′

p.

Exercise 11.18. What is the rank of vector bundle Hom(E,E′) −→M? If
L −→M is a line bundle, show that Hom(L,L) −→M is trivial.
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Solutions to exercises

Exercise 11.14. For any point p ∈M , fix arbitrary local frames (s1, . . . , sk)
for E and (s′1, . . . , s

′
k′) for E

′ over a sufficiently small neighborhood U of p.
Since (s′1, . . . , s

′
k′) forms a basis for E′ at every point in U , there exist smooth

functions {aij}1≤i≤k, 1≤j≤k′ on U such that

si =
k′∑
j=1

aijs
′
j for all 1 ≤ i ≤ k.

Because the sections (s1, . . . , sk) are pointwise linearly independent, the ma-
trix [

aij
]
1≤i≤k, 1≤j≤k′

has full rank k at every point in U . After possibly shrinking U and reordering
the (s′j), we may assume that the k × k minor

[
aij
]
1≤i,j≤k

is invertible

throughout U . We conclude that

(s1, . . . , sk, s
′
k+1, . . . , s

′
k′)

is a local frame for E′|U . □

Remark 11.19. By Lemma 11.10, there is a one-to-one correspondence
between local trivializations

Φ: E|U → U × Rk and Φ′ : E′|U → U × Rk′

and local frames for E|U and E′|U , respectively. Thus, the statement of the
exercise is equivalent to the following: Over a sufficiently small neighborhood
of any point in M , there exists a local trivialization of E′ whose restriction
gives a local trivialization of E. We will make use this to understand the
transition maps of quotient bundles.

Exercise 11.15. Thinking of S1 as the level set of the smooth function
f(x, y) = x2 + y2 on R2, the tangent bundle TS1 is given by ker(df)|S1 . It
is easy to see that the vector field

y∂x − x∂y ∈ ker(df)

defines a nowhere-vanishing section of the real vector bundle TS1. By
Lemma 11.10, this section defines a trivialization of TS1.

Recall that RPn is the quotient space Sn/Z2, where Z2 acts on Sn ⊂ Rn+1

by the antipodal map. Consider the tautological line bundle

γ̃ = {(x, v) ∈ Sn × Rn+1 : v ∈ R · x}

over Sn. The Z2-action on Sn lifts to a Z2-action on γ̃ by

(x, v) 7→ (−x, v).
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It is clear from the definition (cf. (11.5)) that the canonical line bundle
γ → RPn is the Z2-quotient of γ̃. By Lemma 11.10, γ is trivial if and only if
it admits a nowhere-vanishing section ξ. Such a section would arise as the
image under the quotient projection of a Z2-invariant, nowhere-vanishing

section ξ̃ of γ̃ over Sn.

Consider the map

ζ : Sn → γ̃, x 7→ (x, x),

which defines a nowhere-vanishing section of γ̃. Note, however, that (−1) ∈
Z2 acts on ζ by

ζ(−x) = (−x,−x) = −(x, x) = −ζ(x),

so ζ is anti -invariant under the Z2-action.

Suppose we try to define a Z2-invariant section ξ̃ by rescaling ζ:

ξ̃(x) = f(x)ζ(x)

for some smooth, nowhere-vanishing function f : Sn → R. Then we must
have

ξ̃(−x) = ξ̃(x) ⇒ f(−x)ζ(−x) = f(x)ζ(x) = f(x)(−ζ(x)),

which implies

f(−x) = −f(x).
So f must be an odd function. But by the Intermediate Value Theorem,
any continuous odd function on Sn must vanish somewhere, contradicting
the assumption that f is nowhere vanishing.

Therefore, no such Z2-invariant, nowhere-vanishing section ξ̃ exists, and
hence the line bundle γ is non-trivial. □

Exercise 11.16. Thinking of S3 as the level set of the smooth function
f(z, w) = |z|2 + |w|2 on C2, the tangent bundle TS3 is given by

TS3 = ker(df = zdz + zdz + wdw + wdw)|S3 .

The vector fields

ξ1 = iz
∂

∂z
+ iw

∂

∂w
− iz̄

∂

∂z̄
− iw̄

∂

∂w̄
,

ξ2 = −w ∂

∂z
+ z

∂

∂w
− w̄

∂

∂z̄
+ z̄

∂

∂w̄
,

ξ3 = iw
∂

∂z
− iz

∂

∂w
− iw̄

∂

∂z̄
+ iz̄

∂

∂w̄
,

define a global frame for TS3. Therefore, by Lemma 11.10, TS3 is trivial. □
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Exercise 11.17. In Exercise 6.12, we proved that the complex vector space
of holomorphic sections of TCP1 is 3-dimensional. On the other hand, a
holomorphic section of CP1 × C is simply a holomorphic function, and the
only holomorphic functions on CP1 are constants. Therefore, the complex
vector space of holomorphic sections of CP1 × C is 1-dimensional. We con-
clude that TCP1 and CP1 × C are not isomorphic. □

Exercise 11.18. We have rank Hom(E,E′) = rank E × rank E′ because
if rank E = k and rank E′ = k′, then Hom(Ep, E

′
p) can be identified with

Mk′×k(R) or Mk′×k(C) for all p ∈M .

By Lemma 11.10, a line bundle is trivial if and only if it admits a nowhere
vanishing section. By the previous step, if L is a line bundle, then Hom(L,L)
is also a line bundle. Moreover, the identity homomorphism id: L −→ L
defines a nowhere vanishing section of Hom(L,L).





Chapter 12

Dual of vector bundles

There are many operations in linear algebra that transform one vector space
into another. In general, any such basis-independent operation can also be
applied fiber-wise to vector bundles, producing important and interesting
new bundles from a given one. In this lecture, we will learn about duals of
vector bundles, which leads to the definition of the cotangent bundle and
differential 1-forms. We will see more examples in the next lectures.

The dual of a vector space V over the ground field F is the vector space

V ∗ = Hom(V,F)

of linear maps from V to F. The dual of any vector space has the same
dimension. Any choice of basis (e1, . . . , ek) on V determines a dual basis
(e∗1, . . . , e

∗
k) on V

∗ defined by

e∗i (ej) =

{
1 if i = j

0 otherwise.

These bases determine an isomorphism V −→ V ∗ that sends ei to e
∗
i . The

same construction can be applied (fiber-wise) to vector bundles (producing
a co-frame from a frame).

Lemma 12.1. Given a vector bundle E −→ M , there exists a dual vector
bundle of the same regularity type, E∗ −→M , such that E∗

p = (Ep)
∗ for all

p ∈M .

107
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Proof. Given a presentation of E as in (11.2), the dual vector bundle is
(12.1)

E∗ =
∐
α∈I

(Vα × F ∗
α)/ ∼, where (x, ηα) ∼ (y, ηβ) ⇔

(y, ηβ) ∈ Vβ,α × F ∗
β , (x, ηα) ∈ Vα,β × F ∗

α, (x,Φα 7→β(x)
∗(ηβ)) =

(
φα7→β(x), ηβ

)
Here,

Φ∗
α 7→β(x) : F

∗
β −→ F ∗

α

is the dual of Φα 7→β(x), which reverses direction. In general, if

L : F1 −→ F2

is a linear map between two vector spaces, its dual is the linear map

L∗ : F ∗
2 −→ F ∗

1

defined by

L∗(η)(v) = η(L(v)) ∀ v ∈ F1, η ∈ F ∗
2 = Hom(F2,F).

If one prefers the transition maps to go in the usual direction, we instead
take the inverse of Φ∗

α 7→β(x). That is, the transition maps of E∗ in the

standard sense are Φ∗
α 7→β(x)

−1. Since

Φβ 7→α = Φ−1
α 7→β,

we may also write Φ∗
β 7→α(φα7→β(x)) instead of (Φ∗

α 7→β(x))
−1. When Fα = Rk

or Ck for all α ∈ I, the maps Φα 7→β are matrix-valued functions

Φα 7→β : Vα,β −→ GL(k,R) or GL(k,C).

By the following exercise, Φ∗
α7→β(x)

−1 corresponds to the transpose inverse

of Φα7→β(x). Thus, the transition maps of E∗ inherit the same regularity
as those of E (i.e., if E is continuous, smooth, or holomorphic, then so is
E∗). □

Exercise 12.2. For any linear map

L : Fm −→ Fn, v 7→ Av,

given by an n×m matrix A, show that the matrix of

L∗ : (Fn)∗ ∼= Fn −→ (Fm)∗ ∼= Fm

is AT . Here, the identification (Fn)∗ ∼= Fn uses the standard basis of Fn.

The example of the cotangent bundle.

Definition 12.3. For every smooth or holomorphic manifoldM , the dual of
the tangent bundle is called the (smooth or holomorphic) cotangent bundle,
denoted T ∗M .
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If

φ = (x1, . . . , xm) : U −→ V ⊂ Rn or Cn

is a chart on M , then ∂x1 , . . . , ∂xm form a local frame for TM over U , and
dx1, . . . , dxm form the dual frame for T ∗M , satisfying

dxi(∂xj ) =

{
1 if i = j

0 otherwise.

A section of TM over U is called a vector field; a section of T ∗M is called
a differential 1-form. With respect to the co-frame dx1, . . . , dxm, every
differential 1-form has the local expression

η =

m∑
i=1

ai(x) dxi

for some smooth or holomorphic functions ai(x).

For every smooth function f : U −→ R (or holomorphic f : U −→ C), the
derivative of f at any point x ∈ U is a linear map

dxf : TxM −→ Tf(x)R = R.

Therefore, by the definition of the dual bundle, df defines a section of T ∗M
over U (i.e., a differential 1-form), which has the local expression

df =
m∑
i=1

∂f

∂xi
dxi.

For this reason, the derivative of f is often referred to as the differential
of f . We will later see that every differential 1-form is locally of the form
df for some smooth or holomorphic function f – this is the content of the
Poincaré Lemma.

Globally, recall from (6.3) that, if M is presented as a quilted space

M ..=
∐
α∈I

Vα
/{
Vα,β ∋ x ∼ φα 7→β(x) ∈ Vβ,α for all α, β ∈ I

}
,

then a vector field on M is a collection of local vector fields Xα on Vα
satisfying the compatibility condition:

Xβ|Vβ,α
= dφα 7→β(Xα|Vα,β

).

Since dφα 7→β pushes Xα|Vα,β
forward by a diffeomorphism to a vector field

on an open subset of Vβ, it is often called the push-forward map, denoted
(φα 7→β)∗.

Similarly, by (12.1), a global differential 1-form η on M is a collection of
local 1-forms ηα on Vα satisfying the compatibility condition:

ηα|Vβ,α
= φ∗

α 7→β(ηβ|Vα,β
).
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Here, the pullback map

φ∗
α 7→β

..= (dφα 7→β)
∗

is the dual of the push-forward map and acts by composition with dφα7→β.
That is, for a vector field Xα, the action is defined by(

φ∗
α 7→β(ηβ)

)
(Xα) ..= ηβ

(
(φα 7→β)∗(Xα)

)
= ηβ

(
dφα 7→β(Xα)

)
.

If x = (x1, . . . , xm) are coordinates on Vα and y = (y1, . . . , ym) are coordi-
nates on Vβ, with y = φα 7→β(x) on the overlap, then

ηβ =

m∑
i=1

bi(y) dyi

and

φ∗
α 7→β(ηβ) = ηβ ◦ dφα 7→β =

m∑
i=1

bi(φα 7→β(x)) dyi ◦ dφα 7→β.

By the chain rule,

dyi ◦ dφα 7→β = d(yi(x)) =

m∑
j=1

∂yi
∂xj

dxj .

Therefore, computing pullbacks is straightforward:

φ∗
α 7→β

(
m∑
i=1

bi(y) dyi

)
=

m∑
i=1

m∑
j=1

bi(φα 7→β(x))
∂yi
∂xj

dxj .

If

ηα =
m∑
i=1

ai(x) dxi,

then the compatibility condition reads

ai(x) =
m∑
j=1

bj(φα 7→β(x))
∂yj
∂xi

on the overlap.

More generally, if f : M → N is a smooth or holomorphic map between two
manifolds, the derivative of f is a vector bundle homomorphism

df : TM −→ TN

lifting f . The dual of this is called the pullback by f and is a vector bundle
homomorphism

f∗ ..= (df)∗ : T ∗N −→ T ∗M
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in the reverse direction. Formally, it is simply composition with df ; i.e., for
every p ∈M , v ∈ TpM , and η ∈ T ∗

f(p)N , we have

f∗η ∈ T ∗
pM, (f∗η)(v) = η(dpf(v)).

In local coordinates, the definition is the same as above. If x = (x1, . . . , xm)
are local coordinates on U ⊂ M and y = (y1, . . . , yn) are coordinates on
U ′ ⊂ N , with y = f(x) on f−1(V ) ∩ U , then a 1-form η on U ′ has local
expansion

η =
n∑

i=1

bi(y) dyi

and

f∗(η) =

n∑
i=1

m∑
j=1

bi(f(x))
∂yi
∂xj

dxj .

Exercise 12.4. Thinking of S1 as R/Z, show that the 1-form dt on R
descends to a 1-form on S1. Consider the standard embedding ι : S1 ↪→ R2

of S1 in R2 and find the pullback of differential 1-form

η =
−xdy + ydx

x2 + y2

on R2 − {0} to S1 in terms of dt.

Exercise 12.5. Recall that the 2-sphere S2 ⊂ R3 can be covered by two
charts φ± : U± → V± ∼= R2, with transition map

φ+ 7→− : V+,− = R2 \ {0} → V−,+ = R2 \ {0}, x = (x1, x2) 7→
1

|x|2
(x1, x2).

Does the differential 1-form x1dx1 + x2dx2 on V− extend smoothly to the
entire S2?



112 12. Dual of vector bundles

Solutions to exercises

Exercise 12.2. In the domain of L, (Fn)∗ is identified with Fn by letting a
column vector w ∈ Fn act as a linear map ηw on Fn via

ηw : Fn −→ F, v −→ wT · v ∈ F ∀ v ∈ Fn.

The identification of (Fm)∗ with Fm on the target is defined similarly.

By definition, for every w ∈ Fm we have

(L∗ηw)(v) = ηw(L(v)) = wTL(v)

= wTAv = (ATw)T v = η(ATw)(v) ∀ v ∈ Fn.

Therefore, under the identifications of (Fn)∗ with Fn and (Fm)∗ with Fm as
above, L∗ maps w to ATw. □

Exercise 12.4. The group of integers Z acts on R by translations:

φn : R −→ R, φn(t) = t+ n ∀ n ∈ Z, t ∈ R.
The 1-form dt is invariant under this action; i.e. φ∗

ndt = d(t + n) = dt for
every n ∈ Z. Therefore, it descends to a 1-form in the quotient space.

The standard embedding ι : S1 ↪→ R2 = C of S1 in R2 is given by

[t] −→ e2πit = cos(2πt) + i sin(2πt).

Therefore,

ι∗
(
−xdy + ydx

x2 + y2

)
=

− cos(2πt)d sin(2πt) + sin(2πt)d cos(2πt)

1

= 2π
{
− cos(2πt)2dt− sin(2πt)2dt

}
= −2πdt.

□

Exercise 12.5. For the 1-form η in the question, we need to find φ∗
+7→−η

on V+,− = R2 − {0} and check whether the resulting expression extends to
the origin. We have

φ∗
+7→−(x1dx1 + x2dx2) = (x1/|x|2) d(x1/|x|2) + (x2/|x|2) d(x2/|x|2)

= (x1/|x|6) ((x22 − x21) dx1 − 2x1x2 dx2)

+ (x2/|x|6) ((x21 − x22) dx2 − 2x1x2 dx1)

= −x1dx1 + x2dx2
|x|4

.

The last expression clearly does not extend to the origin.
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Pullback, direct sum,
and quotient

In general, a vector bundle homomorphism is a commutative diagram

E
h //

π
��

E′

π′

��
M

f // M ′

lifting a map between two manifolds. However, in many discussions, it is
more convenient if the underlying map is the identity map idM : M −→M .
The following enables reducing any vector bundle homomorphism to one
over idM : M −→M .

Lemma 13.1. Given a continuous, smooth, or holomorphic vector bundle
E′ −→M ′ and a map f : M −→M ′ of the same regularity type, there exists
a so-called pullback vector bundle f∗E′ −→M of the same regularity type
such that

• (f∗E′)p = E′
f(p) for all p ∈M ,

• f∗E′ admits a canonical vector bundle homomorphism f∗E′ −→ E′

lifting f of the same regularity type;

• every vector bundle homomorphism h : E −→ E′ lifting f factors
through f∗E′ in the following sense:

113
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E

��

//

h

))
f∗E′

��

// E′

��
M

idM //

f

55Vβ
f // M ′

By abuse of notation, we will also denote the vector bundle homomorphism
E −→ f∗E′ by h.

Proof. Fix a collection of local trivializations

{Φ′
α : E

′|U ′
α
−→ U ′

α × Fα}α∈I
such that {U ′

α}α∈I is an open covering ofM ′ and the change of trivialization
maps

Φ′
α 7→β : U

′
α ∩ U ′

β −→ Isom(Fα, Fβ)

are continuous, smooth, or holomorphic, depending on the context. Let
Uα = f−1(U ′

α) and define

Φα : (f
∗E′)|Uα −→ Uα × Fα, Φα|p(v) = Φ′

α|f(p)(v) ∀v ∈ (f∗E′)p = E′
f(p).

Then, the change of trivialization maps Φα 7→β of the induced collection {Φα}
are

Φα 7→β = Φ′
α 7→β ◦ f : Uα ∩ Uβ −→ Isom(Fα, Fβ).

We conclude that the change of trivialization maps Φα 7→β are also continu-
ous, smooth, or holomorphic, depending on the context.

The canonical map f∗E′ −→ E′ is simply the identity map

(f∗E′)p = E′
f(p)

idE′
f(p)−→ E′

f(p)

on each fiber. The induced map h : E −→ f∗E′ also views h(v) ∈ E′
f(p) as a

vector in (f∗E′)p for all p ∈M and v ∈ Ep. □

Remark 13.2. In light of the previous lemma, given a smooth or holomor-
phic map f : M −→ M ′, the derivative of f is often considered as a vector
bundle homomorphism

df : TM −→ f∗TM ′

over the identity map on M .

For every two vector bundles E and E′ over the same base M , the direct
sum E ⊕ E′ −→ M of E and E′ is the vector bundle with fibers Ep ⊕ E′

p

at every point p. Direct sum of local trivializations for E and E′ define
local trivialization of the direct sum bundle. With notation as in (11.1) and
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F = R or C, if the change of trivialization maps Φα 7→β for E and Φ′
α 7→β for

E′ are realized as matrix-valued functions

Φα 7→β : Uα ∩ Uβ −→ GL(k,F) and Φ′
α 7→β : Uα ∩ Uβ −→ GL(k′,F),

then the change of trivialization matrix-valued functions corresponding to
E ⊕ E′ are the block-diagonal matrices

(13.1)

[
Φα 7→β 0

0 Φ′
α 7→β

]
.

The direct sum bundle E ⊕ E′ sits as the middle term of a short exact
sequence of vector bundles over M

0 −→ E −→ E ⊕ E′ −→ E′ −→ 0,

where E −→ E⊕E′ is the vector bundle embedding v −→ v⊕0, for all v ∈ E,
and the vector bundle quotient map E ⊕ E′ −→ E′ is simply projection to
the second factor. This is a special case of an arbitrary short exact sequence
of vector bundles that can be associated to any vector bundle embedding as
follows.

Lemma 13.3. Suppose E and E′′ are continuous, smooth, or holomorphic
vector bundles on M and ι : E −→ E′′ is a vector bundle embedding (of the
same regularity type) over (the identity map of) M . Then there exists a
“quotient” vector bundle E′ = E′′/E of the same regularity type such that
E′

p is the quotient vector space E′′
p/Ep for all p ∈M , leading to a short exact

sequence of vector bundles

0 −→ E −→ E′′ −→ E′ −→ 0.

Proof. With F = R or C, if rank E′′ = r′′ and rank E = r, then by the
solution to Exercise 11.14, there is an open covering {Uα}α∈I ofM and local
trivializations

Φ′′
α : E

′′|Uα −→ Uα × Fr′′

such that the restriction of Φ′′
α to E|Uα also defines a local trivialization

Φα
..= Φ′′

α|E|Uα
: E|Uα −→ Uα × Fr.

We conclude that the change of trivialization matrix-valued functions of E
and E′′ are related by

(13.2) Φ′′
α 7→β =

[
Φα 7→β ∗

0 Φ′
α7→β

]
,

for some (r′′ − r)× (r′′ − r) matrix block Φ′
α 7→β in the lower right position.

If Φ′′
α 7→β is continuous, smooth, or holomorphic, the same holds for Φ′

α 7→β.
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With r′ ..= r′′ − r, using the canonical decomposition Fr′′ = Fr ⊕ Fr′ , and
taking the quotient of Φ′′

α and Φα, we obtain local trivializations

Φ′
α : (E

′′/E)|Uα −→ Uα × (Fr′′/Fr) = Uα × Fr′

such that the change of trivialization matrix-valued functions are Φ′
α 7→β. □

Example 13.4. Suppose f : M −→ M ′ is an immersion. Then, from the
point of view of Remark 13.2,

df : TM −→ f∗TM ′

is a vector bundle embedding. The normal bundle of f is the quotient
bundle

N f =
f∗TM ′

TM
,

which fits into a short exact sequence of vector bundles

0 −→ TM −→ f∗TM ′ −→ N f −→ 0.

For submanifolds M ⊂ M ′, i.e., when f is simply the inclusion map of
a submanifold, we will denote the normal bundle of M in M ′ by NM ′M
instead.

Exercise 13.5. Suppose f : M −→ M ′ is a smooth or holomorphic map,
and let Y = f−1(q) ⊂M be a regular level set (thus, a submanifold). Show
that NMY is trivial.

Exercise 13.6. Here is a generalization of the previous exercise. Suppose
f : M −→ M ′ is a smooth or holomorphic map which is transverse to Y ′ ⊂
M ′. Let Y = f−1(Y ′) ⊂M . Show that NMY = (f |Y )∗NM ′Y ′.

Definition 13.7. We say a short exact sequence of vector bundles

0 −→ E −→ E′′ −→ E′ −→ 0.

splits if there is an isomorphism E′′ ∼= E⊕E′ compatible with the inclusion
and projections above; i.e. the following diagram commutes:

E

��

// E′′

��

// E′

��
E // E ⊕ E′ // E′

Exercise 13.8. Show that every continuous or smooth short exact sequence
of vector bundles splits.

Remark 13.9. Pullback commutes with all pointwise operations on vector
bundles; for example, the pullback of a dual bundle or a direct sum is the
dual or direct sum of the pullbacks, respectively. Moreover, if f : M −→
M ′ is a continuous, smooth, or holomorphic map and s : M ′ −→ E′ is a
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continuous, smooth, or holomorphic section of E′, then there is a pullback
section f∗s of the same regularity defined by

(f∗s)(p) = s(f(p)) ∈ E′
f(p) = (f∗E′)p ∀ p ∈M.

Therefore, pullback induces a module homomorphism from the C0(M ′),
C∞(M ′), or Chol(M ′)-module of sections of E′ to the corresponding C0(M),
C∞(M), or Chol(M)-module of sections of f∗E′, covering the algebra ho-
momorphism between functions on M ′ and functions on M .

Exercise 13.10. Suppose π : E −→ M is a smooth or holomorphic vector
bundle. Considering E as a manifold, show that the tangent bundle TE of
E fits into a long exact sequence

0 −→ π∗E −→ TE
dπ−→ π∗TM −→ 0.

If E is a smooth vector bundle, use Exercise 13.8 to conclude that TE ∼=
π∗(E ⊕ TM).
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Solutions to exercises

Exercise 13.5. By definition, for every p ∈ Y ,

dpf : TM −→ TqM
′

is surjective and TpY = ker(dpf). Therefore, df induces an isomorphism

df |Y : NMY =
TM |Y
TY

−→ Y × TqM
′.

This is an isomorphism between the normal bundle NMY and the product
vector bundle Y × TqM

′ (note that TqM
′ is a fixed vector space). □

Exercise 13.6. Generalizing the previous proof, by definition of transver-
sality, for every p ∈ Y , the composition

pr ◦ dpf : TM −→ Tf(p)M
′/Tf(p)Y

′

is surjective and TpY = ker(pr ◦ dpf), where

pr : TM ′|Y −→ NM ′Y ′ =
TM ′|Y
TY

is the quotient projection map. Therefore, df induces an isomorphism

pr ◦ df |Y : NMY =
TM |Y
TY

−→ (f |Y )∗NM ′Y ′.

□

Exercise 13.8. There is a relatively easy way to prove this using metrics
on vector bundles; however, both the following argument and the proof of
existence of metrics – as we will see soon – rely on partition of unity. Holo-
morphic manifolds do not admit partition of unity. Therefore, the proof does
not extend to holomorphic vector bundles. In fact, not every holomorphic
short exact sequence of vector bundles splits and there are “cohomological”
obstructions that are related to the ∗ component in (13.2).

There is a one-to-one correspondence between splittings E′′ = E ⊕ E′

and embeddings ι : E′ −→ E′′ whose composition with the projection map
pr: E′′ −→ E′ is idE′ . We construct such an embedding. By Exercise 11.14,
over a sufficiently small neighborhood U of any point in M , a local frame
(s1, . . . , sk) for E extends to a local frame (s1, . . . , sk′′) for E′′. Therefore,
restricted to the subspace ⟨sk+1, . . . , sk′′⟩ ⊂ E′′|U , the projection map

⟨sk+1, . . . , sk′′⟩ −→ E′|U
is an isomorphism, The inverse of this map gives an embedding

ιU : E′|U −→ E′′|U
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whose composition with the projection map pr: E′′|U −→ E′
U is the identity

map.

Fix an open covering {Uα}α∈I of M and local embeddings (as constructed
above)

ια : E
′|Uα −→ E′′|Uα ,

as well as a partition of unity {ϱα : Uα −→ [0, 1]}α∈I subordinate to this
covering. For each α, the product

ϱαια : E
′|Uα −→ E′′|Uα

extends a similarly denoted vector bundle homomorphism

ϱαια : E
′ −→ E′′

on the entire M that is trivial (i.e. zero) homomorphism outside Uα. Let

ι =
∑
α

ϱαια : E
′ −→ E′′.

Here, we are adding a countable collection of homomorphisms – that is, a
countable collection of sections of Hom(E′, E′′) – such that the sum is finite
in a neighborhood of each point. For every v ∈ E′′, we have

pr(ι(v)) =
∑
α

pr(ϱαια(v)) =
∑

α : v∈E|Uα

ϱαpr(ια(v)) =
( ∑

α : v∈E|Uα

ϱα

)
v = v.

□

Exercise 13.10. For every p ∈ E and v ∈ Ep, the kernel of the derivative
map

dvπ : TvE −→ TpM

is the set of vectors tangent to the fiber Ep at v; that is, ker(dvπ) = TvEp.
Since Ep is a vector space, using parallel transport, the tangent space at
any v ∈ Ep is canonically identified with T0Ep = Ep. Therefore, there is a
canonical isomorphism

ker(dπ)|v ∼= Eπ(v) ∀ v ∈ E.

By the definition of pullback, this implies that

ker(dπ) = π∗E.

Furthermore, from the perspective of Remark 13.2, the map dπ is surjective
onto π∗TM . We conclude that TE fits into a short exact sequence

0 −→ π∗E −→ TE
dπ−→ π∗TM −→ 0.
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By Exercise 13.8, every short exact sequence of smooth vector bundles splits.
Since pullback and direct sum commute, we obtain

TE ∼= π∗E ⊕ π∗TM = π∗(E ⊕ TM).

□
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Tensor and exterior
products

Suppose V1, . . . , Vk and W are vector spaces over a field F. We say that

L : V1 × · · · × Vk −→W

is a k-linear map if it is linear in each input. The concept of the tensor
product, discussed below, allows us to realize L as a linear map defined on
a vector space other than the product V1 × · · · × Vk itself. More precisely,
the tensor product V1⊗ · · · ⊗Vk is the vector space generated by k-tuples
of vectors (v1, . . . , vk) ∈ V1 × · · · × Vk, presented as v1 ⊗ · · · ⊗ vk, subject to
the following relations:

• v1 ⊗ · · · ⊗ (vi + v′i) ⊗ · · · ⊗ vk = (v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk) + (v1 ⊗
· · · ⊗ v′i ⊗ · · · ⊗ vk);

• c(v1⊗· · ·⊗vi⊗· · ·⊗vk) = v1⊗· · ·⊗(cvi)⊗· · ·⊗vk for all i = 1, . . . , k
and c ∈ F.

It is a classical result in linear algebra that every k-linear map L : V1×· · ·×
Vk −→W factors through V1 ⊗ · · · ⊗ Vk; that is, L induces a linear map

L̃ : V1 ⊗ · · · ⊗ Vk −→W

such that L is the composition of L̃ with the natural (k-linear) product map

V1 × · · · × Vk −→ V1 ⊗ · · · ⊗ Vk, (v1, . . . , vk) 7→ v1 ⊗ · · · ⊗ vk.

For each i = 1, . . . , k, suppose {ei,1, . . . , ei,mi} is a basis of Vi. Then the
collection

{e1,j1 ⊗ · · · ⊗ ek,jk}j1,...,jk

121
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is a basis for V1 ⊗ · · · ⊗ Vk. In particular,

dim(V1 ⊗ · · · ⊗ Vk) =
k∏

i=1

dimVi.

It is easy to see that tensor product is associative; i.e.

V1 ⊗ V2 ⊗ V3 = (V1 ⊗ V2)⊗ V3 = V1 ⊗ (V2 ⊗ V3).

A collection of linear maps

Li : Vi −→Wi, i = 1, . . . , ℓ,

induces a linear map

L = L1 ⊗ · · · ⊗ Lℓ : V1 ⊗ · · · ⊗ Vℓ −→W1 ⊗ · · · ⊗Wk

that sends v1 ⊗ · · · ⊗ vℓ to L1(v1) ⊗ · · · ⊗ Lℓ(vℓ). Also, taking dual and
pullback commute with tensor product, and

(V1 ⊕ V2)⊗ V3 = (V1 ⊗ V3)⊕ (V2 ⊗ V3).

Similarly to the other operations discussed in previous sections, this def-
inition extends point-wise to a collection of vector bundles over the same
manifold M . Furthermore, the identities above hold for vector bundles as
well.

Lemma 14.1. Given continuous, smooth, or holomorphic vector bundles
E1, . . . , Ek −→M , there exists a so-called tensor product vector bundle

E1 ⊗ · · · ⊗ Ek −→M

of the same regularity type such that

(E1 ⊗ · · · ⊗ Ek)p = (E1)p ⊗ · · · ⊗ (Ek)p ∀ p ∈M.

Proof. With F = R or C, fix an open covering {Uα}α∈I of M and local
trivializations

Φi,α : Ei|Uα −→ Uα × Fri

with the corresponding change-of-trivialization matrix-valued functions

Φi,α 7→β : Uα ∩ Uβ −→ GL(ri,F)

that are continuous, smooth, or holomorphic, depending on the context.

The tensor product of the vector bundle homomorphisms Φi,α defines local
trivializations

Φ1,α⊗· · ·⊗Φk,α : (E1⊗· · ·⊗Ek)|Uα −→ Uα×(Fr1⊗· · ·⊗Frk) ∼= Uα×Fr1···rk .

The change-of-trivialization matrix-valued functions Φα 7→β of these induced
trivializations are matrices whose entries are products of the corresponding
entries of the Φi,α 7→β. Therefore, the tensor product bundle E1 ⊗ · · · ⊗ Ek

has the same regularity type as its constituents. □
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Example 14.2. For every pair of vector bundles E,E′ −→ M , the vector
bundle

Hom(E,E′) −→M

of vector bundle homomorphisms (over the identity map of M), defined
before Exercise 11.18, is canonically isomorphic to E∗ ⊗ E′. To see this,
since both are defined point-wise, it suffices to canonically identify the two
at the level of vector spaces.

Suppose V and V ′ are vector spaces and

α =
ℓ∑

i=1

ηi ⊗ v′i ∈ V ∗ ⊗ V ′.

We can interpret α as a linear map Lα : V −→ V ′ defined by

Lα(v) =
ℓ∑

i=1

ηi(v) v
′
i.

Conversely, suppose L : V −→ V ′ is a linear map. Fix a basis e1, . . . , ek for
V and a basis e′1, . . . , e

′
ℓ for V ′, and let e∗1, . . . , e

∗
k denote the dual basis of

V ∗. Suppose

L(ei) =
∑
j

aije
′
j ∀ i = 1, . . . , k.

Then define
α =

∑
i

∑
j

aij e
∗
i ⊗ e′j ∈ V ∗ ⊗ V ′.

It is easy to verify that L = Lα. We leave it as an exercise to the reader
to check that the element α associated to L is independent of the choice of
bases.

Exercise 14.3. For every vector bundle E → M , show that the vector
bundle E ⊗ E∗ has a nowhere-vanishing section. In particular, show that
the tensor product of any line bundle with its dual is naturally isomorphic
to the trivial line bundle.

Remark 14.4. The set of real or complex line bundles of any regularity
type over a manifold forms a group under the operation ⊗, with the identity
element being the trivial line bundle and the inverse of any element given
by its dual line bundle. In the case of complex line bundles, this group is
known as the Picard group.

In the definition of tensor product, if all vector spaces Vi are the same vector
space V , we may impose additional symmetry or anti-symmetry relations
among the generators as follows.

There are two ways to define the k-th symmetric tensor product of a vector
space.
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Definition 14.5. (symmetric tensor product as a quotient space) The k-th
symmetric tensor product Symk(V ) of V is the quotient of

V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

by the symmetry relations

v1 ⊗ · · · ⊗ vk ∼ vσ(1) ⊗ · · · ⊗ vσ(k) ∀ σ ∈ Sk,

where Sk is the symmetric group on k letters.

From this perspective, we will continue denoting the equivalence class of
v1⊗· · ·⊗vk in Symk(V ) = V ⊗k/ ∼ by the same expression, bearing in mind
that permuting the factors does not change the element in the vector space.

Definition 14.6. (symmetric tensor product as a subspace) The k-th sym-
metric tensor product Symk(V ) of V is the subspace of elements in V ⊗k

that are invariant under the permutation action of Sk.

From this perspective, an element of Symk(V ) is a linear combination in
V ⊗k that is symmetric with respect to the group action. For instance, for
every v, v′ ∈ V , v ⊗ v′ + v′ ⊗ v defines an element of Sym2(V ). We will use
the second perspective when presenting metrics in the future sections.

Over a field of characteristic zero such as R or C, there is a canonical isomor-
phism between the quotient space (Definition 1) and the subspace (Definition
2), established via the symmetrization map:

sym: V ⊗k −→ Symk(V )subspace, T 7→ 1

k!

∑
σ∈Sk

σ · T.

This map descends to an isomorphism

V ⊗k/∼ ∼−→ Symk(V )subspace ⊂ V ⊗k.

That is, every class in the quotient has a unique symmetric representative.

Symmetric tensor products of vector bundles are defined (pointwise) in the
same way.

Example 14.7. An important example of a symmetric tensor is a Riemann-
ian metric on a real vector space/bundle. Given a real vector space V , a
Riemannian metric g on V is a symmetric bilinear map

g : V × V −→ R

that is positive-definite in the sense that

g(v, v) > 0 ∀ v ̸= 0.

In other words, g can be regarded as a linear map g : Sym2(V ) −→ R satis-
fying the positive-definiteness condition. Equivalently, g is an element of the



14. Tensor and exterior products 125

dual bundle Sym2(V )∗ = Sym2(V ∗) that satisfies the additional positivity
condition above.

A continuous or smooth Riemannian metric on a vector bundle E is a con-
tinuously or smoothly varying family of Riemannian metrics on fibers of
E. In other words, g is a continuous or smooth section of Sym2(E∗) that
is positive-definite on each fiber. The semi-positivity condition is an open
condition; that is, if g is a Riemannian metric, then any sufficiently small
deformation of it in the space of sections of Sym2(E∗) will also be a Rie-
mannian metric. A Riemannian metric on a smooth manifold M is, by
definition, a Riemannian metric on its tangent bundle. We will learn more
about Riemannian manifolds in upcoming lectures.

Next, we define and study a skew-symmetric analogue of the tensor product.

Definition 14.8. The k-th exterior product ΛkV of V is the quotient of

V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

by the skew-symmetry relations

v1 ⊗ · · · ⊗ vk ∼ ε(σ) vσ(1) ⊗ · · · ⊗ vσ(k) ∀ σ ∈ Sk,

where ε(σ) ∈ {±1} is the sign of the permutation σ. If σ is a product of an
odd number of transpositions, then ε(σ) = −1; otherwise, it is +1.

We will denote the equivalence class of v1 ⊗ · · · ⊗ vk in ΛkV = V ⊗k/ ∼ by

v1 ∧ · · · ∧ vk,
bearing in mind that permuting the factors may introduce a sign. For in-
stance, for every 1 ≤ i < j ≤ k, we have

v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vk = −v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vk.
Therefore, if vi = vj for some i < j, then

(14.1) v1 ∧ · · · ∧ vk = 0.

More generally, successive applications of this fact show that if v1, . . . , vk
are linearly dependent, then

v1 ∧ · · · ∧ vk = 0.

In fact, for the following reason, v1 ∧ · · · ∧ vk = 0 if and only if v1, . . . , vk
are linearly dependent.

If e1, . . . , em is a frame (ordered basis) for V , then the collection

(14.2) {ei1 ∧ · · · ∧ eik}0<i1<i2<···<ik≤m

is a basis for ΛkV . In particular, ΛkV only makes sense for 0 ≤ k ≤ m and
is 0 (i.e., trivial) for other values of k.
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• For k = 0, Λ0V is defined to be F = R or C, depending on the
context.

• For k = 1, Λ1V is simply V itself.

• For k = dimV , ΛtopV ..= ΛdimV V is a 1-dimensional vector space
generated by any element of the form

ω = v1 ∧ · · · ∧ vk,

where v1, . . . , vk is an ordered basis (or frame) for V . Note that any
1-dimensional vector space over the ground field F can be identified
with F, but the identification is not canonical.

A linear map L : V −→W induces linear maps

ΛkL : ΛkV −→ ΛkW, ∀ k ≥ 0.

Exercise 14.9. Suppose L : Fm −→ Fm is a linear map given by an m×m
matrix A = [aij ]. What is the linear map

ΛmL : ΛmFm = F −→ F

in terms of aij?

Exercise 14.10. Consider the linear map

L : M2×2(F) −→M2×2(F), A −→ BA

where M2×2(F) is the space of real 2× 2 matrices and B ∈M2×2(F). Show
that

Λ4L : Λ4M2×2(F) −→ Λ4M2×2(F)
is multiplication by det(B)2.

Exterior products of vector bundles are defined (pointwise) in the same way.

Lemma 14.11. Given a continuous, smooth, or holomorphic vector bundle
E −→ M , for every 0 ≤ k ≤ rank E, there exists a so-called exterior
product vector bundle

ΛkE −→M

of the same regularity type such that

(ΛkE)p = ΛkEp ∀ p ∈M.

In particular, Λ0E = M × R or M × C is defined to be the trivial bundle,
Λ1E = E, and

ΛtopE ..= ΛrankEE −→M

is a line bundle whose fiber at any point p is generated by the wedge product
of the vectors in a frame for Ep.
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Proof. The proof of the first statement is identical to that of Lemma 14.1;
that is, the change-of-trivialization matrix-valued functions of each ΛkE
are matrices whose entries are products of k × k minors of the change-of-
trivialization matrices Φα 7→β of E. Therefore, ΛkE has the same regularity
type as its constituents. In particular, it follows from the solution to Exer-
cise 14.9 that the change-of-trivialization functions of the line bundle ΛtopE
are

det(Φα 7→β) : Uα ∩ Uβ −→ F∗.

The statements about the special cases are the vector bundle analogues of
the items listed before Exercise 17.1. More precisely, for k = 0, we define
Λ0E =M×F. We will later see that this convention is consistent with other
constructions. For k = 1, Λ1E = E by definition. For k = r ..= rankE,
any local trivialization E|U −→ U ×Fr corresponds to a frame s1, . . . , sr for
EU . Wedging these sections defines a nonzero section ω = s1 ∧ · · · ∧ sr of
(ΛtopE)|U (and thus a local trivialization (ΛtopE)|U −→ U × F). Changing
the local trivialization corresponds to changing the given frame to another
frame s′1, . . . , s

′
r. If

s′i =

r∑
j=1

aijsj ∀ i = 1, . . . , r,

then
ω′ = s′1 ∧ · · · ∧ s′r

is related to ω by

(14.3) ω′ = det(aij)ω.

□

Exercise 14.12. What is the rank of ΛkE?

In the next lecture, we will dive deeper into the definition of the top exterior
product and orientability.
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Solutions to exercises

Exercise 14.3. A nowhere vanishing section of E ⊗E∗ is equivalent to an
embedding of the trivial line bundle

O ..=M × F

into E ⊗ E∗. Therefore, we need to find a (canonical) embedding

ι : O −→ E ⊗ E∗

of O into E ⊗ E∗. Taking duals, this is equivalent to a surjective vector
bundle homomorphism (over the identity map of M)

ι∗ : (E ⊗ E∗)∗ = E∗ ⊗ E −→ O∗ = O.
However, the natural pairing between elements of E and those of the dual
bundle E∗ defines a canonical surjective bundle homomorphism

E∗ ⊗ E −→ O,
which completes the proof of the first statement.

If E is a line bundle, then E⊗E∗ is also a line bundle. Therefore, the above
(surjective) morphism is an isomorphism. □

Exercise 14.9. Let e1, . . . , em denote the standard basis of Fm. We have

vj ..= L(ej) =

m∑
i=1

aijej ∀ j = 1, . . . ,m.

Therefore, the induced map ΛmL is given by

e1 ∧ · · · ∧ em 7→ v1 ∧ · · · ∧ vm
Expanding the wedge product on right we get m2 terms of the form

a1j1a2j2 · · · amjmej1 ∧ · · · ∧ emjm

where (j1, . . . , jm) ∈ {1, . . . ,m}m. However, by (14.1), the latter is nonzero
if and only if

σ = (j1, . . . , jm)

is a permutation of (1, 2, . . . ,m). Moreover, if σ ∈ Sm, then

ej1 ∧ · · · ∧ emjm = ε(σ)e1 ∧ · · · ∧ em.
We conclude that

(ΛmL)(e1 ∧ · · · ∧ em) =
( ∑

σ∈Sm

ε(σ)a1σ(1)a2σ(2) · · · amσ(m)

)
e1 ∧ · · · ∧ em

= det(A) e1 ∧ · · · ∧ em.
□
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Remark 14.13. In general, given an m-dimensional vector space V and a
linear map L : V → V , the induced linear map

ΛmL : ΛmV → ΛmV

is multiplication by the base-independent quantity det(L). Fixing a basis for
V identifies V with Fm, and L with a matrix multiplication v 7→ Av. Then,
the calculation above shows that ΛmL : ΛmV → ΛmV is multiplication by
det(A). Changing the basis replaces A with a conjugate matrix BAB−1,
which has the same determinant.

Exercise 14.10. By the remark above, we need to fix a basis for M2×2(F),
find the matrix of L with respect to that basis, and calculate its determinant.
Consider the standard basis

e11 =

[
1 0
0 0

]
, e12 =

[
0 1
0 0

]
, e21 =

[
0 0
1 0

]
, e22 =

[
0 0
0 1

]
for M2×2(F). Then

L(e11) =

[
b11 0
b21 0

]
= b11e11 + b21e21,

L(e12) =

[
0 b11
0 b21

]
= b11e12 + b21e22,

L(e21) =

[
b12 0
b22 0

]
= b12e11 + b22e21,

L(e22) =

[
0 b12
0 b22

]
= b12e12 + b22e22,

which corresponds to the 4× 4 matrix
b11 0 b12 0
0 b11 0 b12
b21 0 b22 0
0 b21 0 b22

 .
Switching two columns and two rows, we get the matrix[

B 0
0 B

]
,

which has the same determinant. We conclude that Λ4(L) is multiplication
by

det

[
B 0
0 B

]
= det(B)2.

□

Exercise 14.12. If rankE = r, then, by (14.2), we have rankΛkE =
(
r
k

)
.





Chapter 15

Orientability

In the last lecture, we saw that given any real vector bundle E −→ M ,
the top exterior power defines a line bundle ΛtopE −→ M , whose elements
correspond to wedges of vectors in a frame for E at each point. The following
definition will play an important role in defining the integral of differential
forms over smooth manifolds later on.

Definition 15.1. The top exterior product line bundle ΛtopE −→ M is
also called the determinant line bundle of E and is sometimes denoted by
det(E). A real vector bundle is called orientable if and only if det(E) is
isomorphic to the trivial line bundle M × R.

An orientation on a real vector bundle E is a choice of isomorphism

det(E) −→M × R

up to multiplication by a positive function. A smooth manifold is called
orientable if TM is an orientable vector bundle; thus, an orientation on M
is a choice of isomorphism

det(TM) −→M × R

up to multiplication by a positive function.

Remark 15.2. By definition, for line bundles, being orientable is the same
being trivial.

Exercise 15.3. Show that det(E ⊕ E′) ∼= det(E)⊗ det(E′).

Exercise 15.4. Use the previous exercise to prove the following: Suppose
M ⊂ N is a submanifold of codimension 1, and bothM andN are orientable.
Show that the normal bundle of M in N is trivial.

131
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Exercise 15.5. Suppose that M is an orientable smooth manifold and
E −→ M is an orientable smooth vector bundle. Use Exercises 13.10
and 15.3 to show that E is an orientable manifold.

Exercise 15.6. Let M and N be nonempty smooth manifolds. Show that
M ×N is orientable if and only if both M and N are.

Exercise 15.7. Show that a vector bundle E is orientable if and only if
E∗ is orientable. Furthermore, a choice of orientation on E determines an
orientation on E∗.

The following proposition characterizes trivial line bundles, and thus ori-
entable vector bundles.

Proposition 15.8. Suppose L −→ M is a real line bundle. Then L is
isomorphic to the trivial line bundle if and only if there exists a collection
of local trivializations

Φα : E|Uα −→ Uα × R
over an open cover {Uα} ofM such that the corresponding change-of-trivialization
maps

Φα 7→β : Uα ∩ Uβ −→ R∗

are positive. In particular, for every line bundle L, L⊗2 is trivial.

Corollary 15.9. Suppose E −→M is a rank r real vector bundle. Then E
is orientable if and only if there exists a collection of local trivializations

Φα : E|Uα −→ Uα × Rr

over an open cover {Uα} ofM such that the corresponding change-of-trivialization
maps

Φα 7→β : Uα ∩ Uβ −→ GL(r,R)
have positive determinant.

Proof. The change-of-trivialization maps for det(E) are given by det(Φα 7→β).
If E admits such a collection of local trivializations, then by Proposition 15.8,
det(E) is isomorphic to the trivial line bundle.

Conversely, suppose E is orientable, i.e., det(E) is isomorphic to the trivial
line bundle, and fix an isomorphism

φ : det(E) −→M × R.

Starting from an arbitrary collection of local trivializations

Φα : E|Uα −→ Uα × Rr

such that each Uα is connected, we compare the induced trivializations

det(Φα) : det(E)|Uα −→ Uα × R
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and the restrictions

φ|Uα : det(E)|Uα −→ Uα × R.

Since

(φ|Uα) ◦ det(Φα)
−1 : Uα × R −→ Uα × R

is a bundle isomorphism, it is given by multiplication by a nowhere-vanishing
function. Thus, over each Uα, this function is either strictly positive or
strictly negative. In the first case, we keep Φα as is. In the second case,

we replace Φα with Φ̃α = B ◦ Φα, where B ∈ GL(r,R) is any orientation-
reversing linear isomorphism, such as

(x1, . . . , xr) 7→ (−x1, x2, . . . , xr).

This change flips the sign of the determinant, so that (φ|Uα) ◦ det(Φ̃α)
−1

becomes multiplication by a positive function. In this way, we obtain a new
collection of local trivializations such that each

(φ|Uα) ◦ det(Φα)
−1

is multiplication by a positive function.

Since

(φ|−1
Uβ

◦ φ|Uα)|Uα∩Uβ
= id,

it follows that

det(Φα 7→β) = det(Φβ ◦ Φ−1
α )

= det
(
Φβ ◦ φ|−1

Uβ
◦ φ|Uα ◦ Φ−1

α

)
= det

(
(φ|Uβ

◦ det(Φβ)
−1)−1

)
det
(
(φ|Uα ◦ det(Φα)

−1)
)
> 0,

as desired. □

Proof of Proposition 15.8. While one can prove this proposition more
easily by introducing a Riemannian metric on L, we give here a self-contained
argument that avoids the use of a metric. Instead, we rely directly on a par-
tition of unity – a technique that will later reappear in the construction of
Riemannian metrics.

One direction is straightforward. If ψ : L −→ M × R is an isomorphism,
then it defines a global trivialization of L, and its restriction to any open
set of M gives a local trivialization for which all transition functions are the
identity map (and hence positive).

Conversely, suppose we are given a collection of local trivializations

Φα : L|Uα −→ Uα × R
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over an open cover {Uα} ofM , such that the associated change-of-trivialization
maps

Φα 7→β : Uα ∩ Uβ −→ R∗

are all positive-valued functions. An isomorphism ψ : L −→ M × R arises
from a collection of local isomorphisms

Uα × R −→ Uα × R, (x, v) 7→ (x, fα(x)v),

where the functions fα : Uα → R+ are required to satisfy the compatibility
condition

fβ · Φα 7→β = fα on Uα ∩ Uβ.

In other words, on overlaps Uα ∩ Uβ, the following diagram commutes:

L|Uα

Φα // Uα × R

×Φα7→β

��

× fα // Uα × R

id

��
L|Uβ

Φβ // Uβ × R
× fβ // Uβ × R

Since each Φα 7→β is a positive function, we can define

hα 7→β
..= log(Φα 7→β),

and seek functions hα = log(fα) : Uα → R such that the equivalent compat-
ibility condition

hα = hα 7→β + hβ on Uα ∩ Uβ

is satisfied. Let {ϱα : Uα → [0, 1]} be a partition of unity subordinate to the
given cover. Then the functions

hα =
∑
β ̸=α

ϱβ · hα 7→β

are well-defined and smooth, and they satisfy the required relation on over-
laps. Thus, the functions fα = ehα define a global trivialization of L.

Given a collection of local trivializations

Φα : L|Uα −→ Uα × R

of L over an open cover {Uα} of M , the induced local trivializations of L⊗2

are given by Φ⊗2
α . Consequently, the change-of-trivialization maps for L⊗2

are the squares of those for L, and are therefore positive-valued.

□
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Remark 15.10. The proof of the following statement is somewhat beyond
the scope of this course, but real line bundles over a manifoldM are classified
topologically by a homological invariant called the first Stiefel–Whitney
class.

If M̃ is the universal cover of M , then every real line bundle over M is the

quotient of the trivial line bundle M̃ ×R, where the action of π1(M) on the
second factor is determined by a group homomorphism

π1(M) −→ R∗ = Auto(R).

Since R∗ is abelian, this homomorphism factors through the abelianization
of π1(M), giving a map

H1(M ;Z) −→ R∗.

Here, H1(M ;Z) is the first homology group of M that we do not define in
this book. Composing with the group homomorphism R∗ → Z2 that sends
t ̸= 0 to the sign of t, we obtain a homomorphism

H1(M ;Z) −→ Z2.

Two elements φ,φ′ ∈ Hom(H1(M),R∗) define isomorphic real line bundles
if and only if they induce the same homomorphism H1(M) → Z2. (See
Exercise 15.7 for a related discussion.)

Moreover, the real line bundle associated to φ ∈ Hom(H1(M),Z2) is topo-
logically trivial if and only if φ is the trivial homomorphism.

Example 15.11. For M = S1, we have π1(S
1) = Z and Hom(Z,Z2) = Z2.

The non-trivial line bundle L → S1 = R/Z associated to the unique non-
trivial homomorphism is the Möbius band:

L = (R× R)/Z,

where n ∈ Z acts by (x, v) ∼ (x+ n, (−1)nv) for all (x, v) ∈ R× R.

Exercise 15.12. If E −→ M is a vector bundle, show that E ⊕ E is ori-
entable.

Exercise 15.13. Show that every complex vector bundle, when seen as a
real vector bundle, is orientable.

Exercise 15.14. Show that the tangent bundle of any smooth manifold is
an orientable manifold.

Exercise 15.15. By studying the transition maps of the standard atlas
of RP2, prove that RP2 is not orientable (i.e. prove RP2 is not orientable
without using RP2 = S2/Z2).

Definition 15.16. Suppose E −→ M is an orientable vector bundle and
fix an orientation on it; that is, fix a line bundle isomorphism ψ : ΛtopE −→
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M ×R up to multiplication by a positive function. For every subset U ⊂M
and any frame s1, . . . , sk for E|U , we say (s1, . . . , sk) is a positive frame if

ψx(s1(x) ∧ · · · ∧ sk(x)) ∈ R+ ∀ x ∈ U ;

i.e., ψ maps s1 ∧ · · · ∧ sk to a positive multiple of the constant section 1 in
U × R.

Definition 15.17. Suppose M is an orientable manifold and fix an orien-
tation on M ; that is, fix an isomorphism ψ : ΛtopTM −→ M × R up to
multiplication by a positive function. We say a chart φ : U −→ V ⊂ Rm

is compatible with the orientation if (∂x1 , . . . , ∂xm) is a positive frame.
An atlas on M is called an oriented atlas if every chart in it is compatible
with the orientation.

If a chart is not compatible with the orientation, we can compose it with an
orientation-reversing diffeomorphism such as

(x1, . . . , xm) 7→ (−x1, . . . , xm)

to make it compatible. Two overlapping charts φα : Uα −→ Rm and φβ : Uβ −→
Rm are both compatible with the orientation or not if and only if

det(dφα 7→β) > 0.

On every oriented smooth manifold with the maximal smooth atlas A, we
can choose a maximal oriented subatlas A+ of charts compatible with the
orientation. By the discussion above, the remaining charts form a subatlas
A− that is the maximal oriented subatlas for the opposite orientation.
The latter corresponds to the trivialization

−ψ : ΛtopTM −→M × R.

Exercise 15.18. Is the two-chart atlas (2.3) on S2 an oriented atlas?

Exercise 15.19. Prove that if M is an orientable smooth manifold (with
boundary) then the boundary ∂M is also an orientable manifold. Describe
a convention for defining an induced orientation on ∂M .

Orientation will play a major role in the definition of the integral of dif-
ferential forms on manifolds, and we will use an oriented atlas for related
calculations.
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Solutions to exercises

Exercise 15.3. Suppose Φα 7→β are the change-of-trivialization matrix-
valued functions of E and Φ′

α 7→β are the change-of-trivialization matrix-

valued functions of E′ with respect to a collection of local trivializations
over the same open covering ofM . Then, recall from (13.1) that the change-
of-trivialization matrix-valued functions corresponding to E ⊕ E′ are the
block-diagonal matrices [

Φα 7→β 0
0 Φ′

α 7→β

]
.

Then, as we explained in the proof of Lemma 14.11, the change-of-trivialization
functions of the line bundles det(E), det(E′), and det(E ⊕ E′) are

det(Φα 7→β), det(Φ′
α 7→β), and det

[
Φα 7→β 0

0 Φ′
α 7→β

]
= det(Φα 7→β) det(Φ

′
α 7→β),

respectively. Since the latter is the product of the first two, we conclude
that

det(E ⊕ E′) ∼= det(E)⊗ det(E′).

□

Exercise 15.4. We know from Exercise 13.8 that TN |M splits as

TN |M ∼= TM ⊕NNM.

By the previous exercise, and since NNM is a line bundle (so Λtop(NNM) =
Λ1(NNM) = NNM), we have

Λtop(TN |M ) ∼= Λtop(TM)⊗NNM.

By the orientability assumption, both Λtop(TN) and Λtop(TM) are trivial
line bundles. Therefore, NNM is also trivial. □

Exercise 15.5. By Exercise 13.10, we have

TE ∼= π∗(E ⊕ TM).

By Exercise 15.3 and since taking the exterior product commutes with pull-
back, we get

Λtop TE = π∗Λtop(E ⊕ TM) = π∗
(
ΛtopE ⊗ ΛtopTM

)
.

By assumption, both E and M are orientable; i.e., ΛtopE and ΛtopTM are
trivial line bundles. We conclude that Λtop TE is also trivial; i.e., E is an
orientable manifold. □
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Exercise 15.6. If M and N are orientable, then det(TM) and det(TN)
are trivial line bundles. Let πM : M ×N →M and πN : M ×N → N denote
the projection maps to the first and second factors. Then,

T (M ×N) = π∗MTM ⊕ π∗NTN.

Therefore,

det(T (M ×N)) = π∗M det(TM)⊗ π∗N det(TN)

is also trivial. We conclude that M ×N is orientable.

Conversely, suppose M × N is orientable. For any y ∈ N , restricted to
M × {y} ∼=M , we have

T (M ×N)|{x}×N
∼= TM ⊕M × TyN.

The second term on the right is a trivial (product) vector bundle; therefore,
Λtop(M × TyN) is the trivial line bundle. Since

det
(
T (M ×N)|{x}×N

)
∼= det(TM)⊗ det(M × TyN),

and both the left-hand term and the last term are trivial, we conclude that
Λtop TM is also trivial. Therefore, M is orientable. By symmetry of the
argument, N is orientable as well. □

Exercise 15.7. Since det(E∗) = det(E)∗, taking duals and then inverting, a
choice of isomorphism det(E) → O determines an isomorphism det(E∗) → O.

□

Exercise 15.12. We have

det(E ⊕ E) = det(E)⊗ det(E) = det(E)⊗2.

By Proposition 15.8, det(E)⊗2 ∼= M × R. We conclude that E ⊕ E is ori-
entable. □

Exercise 15.13. Given a collection of local trivializations

Φα : E|Uα −→ Uα × Cr

over an open cover {Uα} of M , let Φα 7→β ∈ GL(r,C) denote the change-of-
trivialization matrix-valued functions of E. Let

Φα 7→β = Φ′
α7→β + iΦ′′

α 7→β

denote the decomposition into real and imaginary parts. Then the change-
of-trivialization matrix-valued functions of the real vector bundle underlying



Solutions to exercises 139

E are

ΦR
α 7→β =

[
Φ′
α 7→β −Φ′′

α 7→β

Φ′′
α 7→β Φ′

α 7→β

]
.

It is an exercise in linear algebra that

det(ΦR
α 7→β) = det(Φ′

α7→β)
2 + det(Φ′′

α 7→β)
2 > 0.

Therefore, by Corollary 15.9, the real vector bundle underlying E is ori-
entable. □

Exercise 15.14. Applying Exercise 13.10 to E = TM , we have

T (TM) = π∗(TM ⊕ TM).

Therefore,

det(T (TM)) = π∗ det(TM)⊗2.

By Proposition 15.8, det(T (TM)) ∼= TM × R. We conclude that TM is an
orientable manifold. □

Exercise 15.15. Recall from Section 2 and the solution to Exercise 3.5
that RP2 can be covered by three charts φj : Uj → Vj ∼= Rn (respectively,
Cn), for j = 0, 1, 2, with transition maps given by

φi 7→j = φj ◦ φ−1
i

(
(xk)k ̸=i

)
= (yk)k ̸=j , where yk =

{
xk/xj if k ̸= i,

1/xj if k = i.

In particular, if (x1, x2) denote the coordinates on V0 and (y0, y1) denote the
coordinates on V2, then

(y0, y1) = φ07→2(x1, x2) = (1/x2, x1/x2).

Therefore,

dφ07→2 =

[
0 −1/x22

1/x2 −x1/x22

]
.

We conclude that

det(dφ07→2) = x−3
2 .

The overlap region V0,2 = R × R∗ has two connected components, on one

of which x−3
2 is positive and on the other it is negative. Therefore, since V0

and V2 are connected, there are no local trivializations

ψ0 : Λ
2(TV0) −→ V0 × R, and ψ2 : Λ

2(TV2) −→ V2 × R

such that

ψ2 ◦ Λ2(dφ07→2) ◦ ψ−1
0 : V0,2 × R −→ V2,0 × R

is positive. □
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Exercise 15.18. As shown in Exercise 3.5, the transition map is

φ+7→−(x) =
1

|x|2
x.

Withing r = |x|, we have

dφ+ 7→− =
1

r4


r2 − 2x21 −2x1x2 · · · −2x1xm
−2x1x2 r2 − 2x22 · · · −2x2xm

...
. . .

...
−2x1xm · · · r2 − 2x2m

 =
1

r2
Im − 2

r4
xxT

where x is treated as a column vector. Since x ̸= 0, the m×m matrix xxT

has rank 1. Moreover, 1
r2
xxT is the orthogonal projection matrix onto the

span of x. Therefore,

Im − 2

r2
xxT

is the matrix of reflection with respect to the plane x⊥ and has determinant
−1. We conclude that

det(dφ+7→−) = −r−2m < 0.

Therefore, the two-chart atlas (2.3) on S2 is not an oriented atlas. □

Exercise 15.19. The boundary ∂M ofM is a manifold of real codimension
one, and we have a short exact sequence of vector bundles

0 −→ T∂M −→ TM |∂M −→ NM∂M −→ 0,

where

NM∂M

is the normal bundle of ∂M in M . For every p ∈ ∂M , there are two distin-
guished directions in NM∂M |p ∼= R: one pointing toward the interior of M ,
and the opposite, outward direction.

More precisely, if φ : U → V ⊂ Hm is a chart around p such that φ(∂M ∩
U) ⊂ ∂Hm in the sense of Definition 1.6, then the inward direction corre-
sponds to (the image of) any vector field of the form u+f∂x1 along ∂Hm (in
the quotient bundle NM∂M), where u is tangent to ∂Hm and f > 0. Simi-
larly, the outward direction corresponds to such a vector field with f < 0.

Therefore, NM∂M admits a collection of local trivializations

Φ: NM∂M |U∩∂M −→ (U ∩ ∂M)× R

such that Φ−1(e1) corresponds to the outward direction, where e1 denotes
the constant section 1 of the trivial bundle. For these trivializations, the
transition maps are positive. Thus, by Proposition 15.8, the line bundle
NM∂M is trivial.
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Moreover, there is a natural correspondence between the two possible trivi-
alizations of NM∂M (on each connected component of ∂M) and the choice
of outward or inward vector fields along ∂M .

Suppose det(TM) → M × R is a trivialization that describes the chosen
orientation on TM . Along ∂M , the short exact sequence above induces a
canonical isomorphism

det(TM)|∂M ∼= det(T∂M)⊗NM∂M.

SinceM is orientable, det(TM) is isomorphic to the trivial line bundle. From
the discussion above, NM∂M is also trivial. We conclude that det(T∂M) is
trivial as well, and therefore ∂M is orientable.

To describe a convention for defining the induced orientation on ∂M , we
need to specify when a frame for T∂M (at a point on the boundary) is
considered oriented. Given an orientation on TM , we define the induced
orientation on T∂M so that the isomorphism

TpM ∼= R · n⃗out(p)⊕ Tp∂M, ∀p ∈ ∂M,

is consistent with the orientations on both sides. Here, n⃗out(p) is any
outward-pointing vector in TpM . In other words, (v1, . . . , vm−1) ∈ Tp∂M is
a positively oriented frame for Tp∂M if and only if

(nout(p), v1, . . . , vm−1) ∈ TpM

is a positively oriented frame for TpM . □
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Metric

We start by recalling the following definition briefly discussed in Exam-
ple 14.7.

Given a continuous or smooth real vector bundle E −→ M , let E ×M E
denote the fiber product of E with itself with respect to the projection map
π : E −→ M in the sense of Theorem 9.4. In other words, the fiber of
E ×M E over p ∈M is Ep × Ep.

Definition 16.1. Given a continuous or smooth real vector bundle E −→
M , a Riemannian metric g on E is a symmetric fiber-wise bilinear map

g : E ×M E −→ R

that is positive-definite in the sense that

g(v, v) > 0 ∀ p ∈M, 0 ̸= v ∈ Ep.

A Riemannian metric on a smooth manifold M is a Riemannian metric on
its tangent bundle.

A Riemannian metric on a smooth vector bundle provides a smoothly vary-
ing inner product on each fiber, enabling us to carry out geometry in a
precise and intrinsic way. It allows us to define notions of length, angle,
and orthogonality for sections of the bundle, which are essential for both
geometric and analytic constructions. In particular, a Riemannian metric
lets us decompose each fiber into orthogonal subspaces – for example, iden-
tifying the quotient E/E′ of a vector bundle embedding E′ ⊂ E with the
orthogonal complement of E′ in E. This yields a simpler and more intuitive
proof that every short exact sequence of smooth vector bundles splits.
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Given a local trivialization

Φ: E|U −→ U × Rk,

the metric takes the matrix form

(u, v) 7→ uTG(x) v ∀ u, v ∈ {x} × Rk,

where each G(x) is a continuous or smooth family of k×k symmetric positive-
definite matrices (depending on Φ) and u, v are column vectors.

Given a collection of local trivializations

Φα : E|Uα −→ Uα × Rk,

over an open cover {Uα} of M , let Φα 7→β ∈ GL(k,R) denote the change-
of-trivialization matrix-valued functions of E, and let Gα denote the matrix
form of g with respect to Φα. Then,

(16.1) Gα = ΦT
α 7→β Gβ Φα 7→β ∀ α, β.

Conversely, a collection {Gα} of positive-definite k × k matrix-valued func-
tions on {Uα} satisfying the compatibility relation above defines a well-
defined metric g on E.

Lemma 16.2. Every vector bundle admits (a plethora of) Riemannian met-
rics.

Proof. Consider an arbitrary collection of local trivializations

Φα : E|Uα −→ Uα × Rk,

over an open cover {Uα} of M , and equip each E|Uα with the metric gα
corresponding to the standard Riemannian metric on Uα×Rk (i.e., Gα = Ik).
Let {ϱα : Uα −→ [0, 1]} be a partition of unity subordinate to the open
covering in consideration. Then the expression

g =
∑
α

ϱαgα

is well-defined and defines a Riemannian metric on E. □

Exercise 16.3. Use a Riemannian metric on any line bundle L → M , to
prove that L admits a collection of local trivializations L|Uα

∼= Uα × R over
an open cover {Uα} of M such that the change of trivialization maps

Φα 7→β : Uα ∩ Uβ → R∗,

(Uα ∩ Uβ)× R ∋ (x, v) → (x,Φα 7→β(x)v) ∈ (Uα ∩ Uβ)× R

are constant ±1.
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Exercise 16.4. Generalize the previous result to show that on every vector
bundle E → M , there exists a collection of local trivializations E|Uα

∼=
Uα ×Rk over an open cover {Uα} of M such that the matrix-valued change
of trivialization maps

Φα 7→β : Uα ∩ Uβ → GL(k,R),

(Uα ∩ Uβ)× Rk ∋ (x, v) → (x,Φα 7→β(x)v) ∈ (Uα ∩ Uβ)× Rk

take values in O(k) ⊂ GL(k,R). Further, if the vector bundle is orientable,
we can improve that to SO(k).

Remark 16.5. Note that O(1) = {±1} and SO(1) = {+1}. Therefore, the
statement above implies Proposition 15.8.

Exercise 16.6. Show that a Riemannian metric on a vector bundle E in-
duces a Riemannian metric on its dual E∗, and more generally on all ten-
sor/exterior products of E.

Definition 16.7. Suppose E →M is a rank r real vector bundle equipped
with a Riemannian metric g, and s1, . . . , sr is a frame for E|U . We say
s1, . . . , sr is an orthonormal frame if |si(p)| = 1 for all i = 1, . . . , r and
p ∈M , and

g(si(p), sj(p)) = 0 for all i ̸= j and p ∈M.

Here,

|v| =
√
g(v, v) ∀ p ∈M, v ∈ Ep

is the length of a vector with respect to g. Also, the angle between two
non-zero vectors v, v′ ∈ Ep is given by

cos−1

(
g(v, v′)

|v||v′|

)
∈ [0, π],

and the condition g(si(p), sj(p)) = 0 means that si(p) and sj(p) are perpen-
dicular.

Exercise 16.8. Suppose s1, . . . , sr and s′1, . . . , s
′
r are two (local) orthonor-

mal frames for (E, g). Show that

s1 ∧ . . . ∧ sr = ±s′1 ∧ . . . ∧ s′r ∈ ΛtopE.

Moreover, if E is oriented and both are positive frames in the sense of
Definition 15.16, then

s1 ∧ . . . ∧ sr = s′1 ∧ . . . ∧ s′r ∈ ΛtopE.

Remark 16.9. The previous exercises says that if E is oriented, then every
Riemannian metric g on E determines a unique global section of det(E)
(and thus a unique trivialization of det(E)) that has norm one with respect
to the induced metric on det(E).
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Recall that a metric on a manifold M is a metric g on its tangent bundle.
Every chart φ : U −→ V ⊂ Rm on M determines a local trivialization of
the tangent bundle with respect to which the metric can be expressed in the
matrix form

g(u, v) = uTG v, G =
[
gij = g(∂xi , ∂xj )

]
,

such that
[
gij
]
is a symmetric positive definite matrix depending on the

variable x ∈ V ⊂ Rm. As a symmetric tensor g ∈ Γ(M,Sym2(T ∗M)), g has
the local equation

g|U =
∑
i,j

gij(x) dxi ⊗ dxj ,

for which we are viewing g as a symmetric tensor in the sense of Defini-
tion 14.6.

Exercise 16.10. IfM ⊂ N is a submanifold, every metric on TN induces a
metric on TM ⊂ TN |M (by restriction). Consider the two-chart covering of
S2 and find the 2× 2 matrices of the metric induced by the standard metric
on R3 to S2 in each chart.

A Riemannian metric g on a vector bundle E yields an isomorphism between
E and E∗ by mapping

v ∈ Ep 7−→ g(v, ·) ∈ E∗
p = Hom(Ep,R).

In the case of a metric on a manifold M , this identifies TM with T ∗M and
therefore their sections as well; i.e., vector fields with differential 1-forms.
For instance, recall from Section 12 that associated to every smooth function
f : M → R, we have the differential 1-form df , which locally expands as

df =
∑
i

∂f

∂xi
dxi.

By the identification above, the vector field ∇f associated to f , called the
gradient vector field, satisfies

(16.2) g(∇f, ·) = df.

Suppose ∇f has the local expansion

∇f =
∑
i

ai ∂xi .

To determine the coefficients ai, apply both sides to the basis vectors ∂xj .
We obtain

g(∇f, ∂xj ) =

m∑
i=1

ai g(∂xi , ∂xj ) =
m∑
i=1

gijai = df(∂xj ) =
∂f

∂xj
.
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Since the matrix G = [gij ] is symmetric, the above equations for all j =
1, . . . ,m are encoded in the matrix equation

G

a1...
am

 =


∂f
∂x1
...
∂f
∂xm

 .
We conclude that a1...

am

 = G−1


∂f
∂x1
...
∂f
∂xm

 .
It is customary to denote the inverse of G by

[
gij
]
. Therefore, the gradient

vector field of any smooth function f has the local expression

∇f =
∑
i,j

gij
∂f

∂xi
∂xj

in any coordinate chart.

If Y ⊂ M is a level set of the smooth function f , then TyY = ker(df |y)
coincides with the orthogonal complement of ∇f(y), because

df(v) = 0 ⇐⇒ g(∇f, v) = 0.

We will talk more about the correspondence between vector fields and dif-
ferential forms in the future lectures.

Exercise 16.11. The length of a parametrized path

γ : (a, b) →M

into a Riemannian manifold (M, g) is the quantity

|γ| =
∫ b

a
|γ̇(t)| dt,

where γ̇(t) = dγ
dt ∈ Tγ(t)M is the velocity vector.

Calculate the length of a semicircle of radius r centered at the origin in the
upper half-plane

H = {(x, y) ∈ R2 | y > 0}

with respect to the metric

g =
dx⊗ dx+ dy ⊗ dy

y2
.
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Continuous, smooth, or holomorphic vector bundles can similarly be equipped
with a Hermitian metric, which generalizes the standard Hermitian inner
product on Cn, given by

Cn ∋ u, v 7−→ uT v ∈ C,

to arbitrary complex vector bundles. Due to the presence of complex con-
jugation in the definition, every Hermitian metric is a smooth object, even
when defined on a holomorphic vector bundle, and the notion of a holomor-
phic metric is thus meaningless.

Remark 16.12. Some sources define the standard Hermitian inner product
on Cn to be

Cn ∋ u, v 7−→ uT v ∈ C.

Adopting this convention will affect some parts of the definition below.

Definition 16.13. Given a continuous, smooth, or holomorphic complex
vector bundle E →M , a Hermitian metric h on E is a fiberwise map

h : E ×M E → C

that is complex linear in the first factor, anti-complex linear in the second
factor, positive-definite in the sense that

h(v, v) > 0 ∀ p ∈M, 0 ̸= v ∈ Ep,

and conjugate-symmetric in the sense that

h(u, v) = h(v, u) ∀ p ∈M, u, v ∈ Ep.

A Hermitian metric on a smooth manifoldM with a complex tangent bundle
is a Hermitian metric on TM .

Remark 16.14. The real part g = hR of any Hermitian metric h is a
Riemannian metric on the underlying real vector space of E. Note that
h(v, v) ∈ R for all v ∈ E, so the length of a vector can be computed using
either h or hR. The concept of angle, however, is defined using hR alone.

Example 16.15. Suppose M is a holomorphic manifold and h is a Her-
mitian metric on its complex tangent bundle TM . With respect to any
holomorphic chart φ : U −→ V ⊂ Cm on M the metric h takes the form

h|U =
∑
i,j

hij(z) dzi ⊗ dzj

where H ..= [hij ] is a positive definite Hermitian matrix (i.e. H
T

= H)
depending on the complex variables z = (z1, . . . , zm) ∈ V ⊂ Rm.
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Exercise 16.16. Show that the real part of the Hermitian metric

h =
dz ⊗ dz

Im(z)2

on the upper half plane H = {z ∈ C | Im(z) > 0} coincides with the
Riemannian metric in Exercise 16.11. Show that the action of SL(2,R) in
Exercise 5.6 on H is an isometry, meaning that the metric h is preserved
under the action of elements of SL(2,R).

With a proof identical to that of Lemma 16.2, one can show that every
smooth complex vector bundles admits a plethora of smooth Hermitian met-
rics.

Exercise 16.17. Show that every continuous or smooth complex vector
bundle E → M admits a collection of local trivializations E|Uα

∼= Uα × Ck

such that the matrix-valued transition maps

Φα 7→β : Uα ∩ Uβ → GL(n,C),

(Uα ∩ Uβ)× Ck ∋ (x, v) → (x,Φα7→β(x)v) ∈ (Uα ∩ Uβ)× Ck,

take values in U(k).
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Solutions to exercises

Exercise 16.3. Fix a metric g on L. Start with an arbitrary collection of
local trivializations Φα : L|Uα

∼= Uα × R over an open cover {Uα} of M and
let

fα(x) = g(Φ−1
α (x, 1),Φ−1

α (x, 1)) ∈ R+ ∀x ∈ Uα.

Multiplying Φα with
√
fα defines a new collection of trivializations

Φ̃α =
√
fα · Φα : L|Uα −→ Uα × R

that identifies g|Uα with the standard metric on Uα × R. Since the the
transition functions

Φ̃α 7→β : Uα ∩ Uβ → R∗,

(Uα ∩ Uβ)× R ∋ (x, v) → (x, Φ̃α 7→β(x)v) ∈ (Uα ∩ Uβ)× R

preserve the standard metric on the trivial bundle (Uα ∩ Uβ)× R, we must

have Φ̃α 7→β ≡ ±1. □

Exercise 16.4. As before, fix a metric g on E and wtart with an arbi-
trary collection of local trivializations Φα : E|Uα

∼= Uα × Rk over an open
cover {Uα} of M . It is a result in linear algebra [HJ13, Chapter 7] that
every semi-positive matrix admits a unique semi-positive square root. A
continuous or smooth family of semi-positive matrices also admits a unique
semi-continuous or smooth family of positive square roots. Let Gα denote
the semi-positive matrix-valued function of g with respect to Φα and

Uα × Rk −→ Uα × Rk, (x, v) −→ (x,Θα(x)v)

denote the bundle isomorphism corresponding to Θα =
√
Gα. Multiplying

Φα with Θα defines a new collection of trivializations

Φ̃α = Θα · Φα

that identifies g|Uα with the standard metric on Uα × Rk. Since the the
transition functions

Φ̃α 7→β : Uα ∩ Uβ → GL(n,R)

preserve the standard metric on the trivial bundle (Uα ∩Uβ)×Rk, we must

have Φ̃α 7→β ∈ O(k). Further, if the vector bundle is orientable, we can start
from a collection of local trivializations compatible with the orientation and

the modification above preserves this property. Therefore, Φ̃α 7→β ∈ O(k)

and det(Φ̃α 7→β) > 0 which implies Φ̃α 7→β ∈ SO(k) . □
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Exercise 16.6. As we mentioned above, a Riemannian metric g on a vector
bundle E yields an isomorphism between E and E∗ by mapping

v ∈ Ep 7−→ g(v, ·) ∈ E∗
p = Hom(Ep,R).

This isomorphism yields a metric on E∗ such that if e1, . . . , ek is an orthonor-
mal basis for Ep then the dual basis e∗1, . . . , e

∗
k is an orthonormal basis for

E∗
p . These two bases induce bases for any tensorial product of E and E∗

and thus define metrics on them for which the induced basis is orthonormal.
Changing e1, . . . , ek to another orthonormal basis corresponds to multipli-
cation by some B ∈ O(k). The induced bases also change by an orthogonal
matrix. So the definition above is well-defined. □

Exercise 16.8. As we mentioned above, every two orthonormal frames are
related by multiplication by a matrix valued function B that takes values in
O(r). Suppose s1, . . . , sr and s′1, . . . , s

′
r are two (local) orthonormal frames

for (E, g). Then,

s′1 ∧ . . . ∧ s′r = det(B) s1 ∧ . . . ∧ sr = ±s1 ∧ . . . ∧ sr.

Moreover, if E is oriented and both are positive frames in the sense of Def-
inition 15.16, then B ∈ SO(r). □

Exercise 16.10. The chart maps are

φ± : U± ..= S2 \ {p±} → R2, (y1, y2) = φ±(x0, x1, x2) =
1

1∓ x0
(x1, x2).

with the inverse

φ−1
± : R2 −→ R3,

(y1, y2) −→ (x0, x1, x2) =
1

y21 + y22 + 1

(
±(y21 + y22 − 1), 2y1, 2y2

)
.

In order to find the matrices of the induced metric on S2 in each chart, we
need to find the vector fields dφ−1

± (∂y1) and dφ−1
± (∂y2) and calculate their

inner products. We have

ξ1 = dφ−1
± (∂y1) =

1

(y21 + y22 + 1)2
(
±4y1, 2 + 2(y22 − y21),−4y1y2

)
,

ξ2 = dφ−1
± (∂y2) =

1

(y21 + y22 + 1)2
(
±4y2,−4y1y2, 2 + 2(y21 − y22)

)
.
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We conclude that

g22 = g11 =ξ1 · ξ1

=
1

(y21 + y22 + 1)4
(
16y21 + 4 + 4(y22 − y21)

2 + 8(y22 − y21) + 16y21y
2
2

)
=

4

(y21 + y22 + 1)4
(1 + y22 + y21)

2 =
4

(y21 + y22 + 1)2
,

g12 = g21 =ξ1 · ξ2

=

(
16y1y2 − 8y1y2 + 8y1y2(y

2
1 − y22)− 8y1y2 + 8y1y2(y

2
2 − y21)

)
(y21 + y22 + 1)4

= 0;

i.e. th matrices of the induced metric on S2 in each chart are a multiple of
the standard metric [

gij(y)
]
=

4

(y21 + y22 + 1)2
I2.

□

Exercise 16.11. The semicircle of radius r centered at the origin can be
parametrized by angle:

γ(θ) = r(cos(θ), sin(θ)) 0 < θ < π.

We have

γ̇ ..=
dγ

dθ
= r(− sin(θ)∂x + cos(θ)∂y).

Therefore,

|γ̇|2 = r2 sin(θ)2 + r2 cos(θ)2

r2 sin(θ)2
=

1

sin(θ)2
.

We conclude that

|γ| =
∫ π

0

1

sin(θ)2
dθ = ∞.

□
Exercise 16.16. With z = x+ iy, we have

dz = dx+ idy.

Therefore,

dz ⊗ dz = (dx+ idy)⊗ (dx− idy) = dx⊗ dx+ dy ⊗ dy.

Since Im(z) = y, we get Show that the real part of the Hermitian metric

Re

(
dz ⊗ dz

Im(z)2

)
=
dx⊗ dx+ dy ⊗ dy

y2
.

Recall that

A =

[
a b
c d

]
∈ SL(2,Z)
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acts on H by

z −→ φA(z) =
az + b

cz + d
.

Therefore,

dφA(∂z) =
a(cz + d)− c(az + b)

(cz + d)2
∂z = (cz + d)−2∂z.

We get

h
(
dφA(∂z), dφA(∂z)

)
=

|cz + d|−4

Im(φA(z))2
.

We also have

Im

(
az + b

cz + d

)
= Im

(
(az + b)(cz + d)

|cz + d|2

)
= Im

(
ac|z|2 + bd+ adz + bcz

|cz + d|2

)
=

y

|cz + d|2
.

Therefore,

h|φA(z)

(
dφA(∂z), dφA(∂z)

)
=

1

y2
= h|z(∂z, ∂z).

We conclude that the metric h is preserved under the action of elements of
SL(2,R). □

Exercise 16.17. Fix a Hermitian metric h on E. Given a collection of local
trivializations

Φα : E|Uα −→ Uα × Ck,

over an open cover {Uα} of M , let Φα 7→β ∈ GL(k,C) denote the change-of-
trivialization matrix-valued functions of E, and let Hα denote the matrix
form of h with respect to Φα. Then,

Hα = ΦT
α 7→β Hβ Φα 7→β ∀ α, β.

Conversely, a collection {Hα} of positive-definite Hermitian k × k matrix-
valued functions on {Uα} satisfying the compatibility relation above defines
a well-defined Hermitian metric h on E.

It is a result in linear algebra [You88, Section 7.4] that every (continu-
ous or smooth family of) semi-positive Hermitian matrix admits a unique
(continuous or smooth family of) semi-positive Hermitian square root. Let

Uα × Ck −→ Uα × Ck, (x, v) −→ (x,Θα(x)v)

denote the linear transformation corresponding to Θα =
√
Hα. Multiplying

Φα with Θα defines a new collection of trivializations

Φ̃α = Θα · Φα
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that identifies h|Uα with the standard Hermitian metric on Uα × Ck. Since
the the transition functions

Φ̃α 7→β : Uα ∩ Uβ → GL(n,C)

preserve the standard Hermitian metric on the trivial bundle (Uα∩Uβ)×Ck,

we must have Φ̃α 7→β ∈ U(k). □
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Differential forms

For every vector space V , recall that the k-th exterior product ΛkV is defined
as the quotient of

V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

by the subspace generated by differences of the form

v1 ⊗ · · · ⊗ vk − ε(σ) vσ(1) ⊗ · · · ⊗ vσ(k) ∀ σ ∈ Sk,

where ε(σ) ∈ {±1} denotes the sign of the permutation σ. For k, k′ ≥ 0, the
natural product map

V ⊗k ⊗ V ⊗k′ −→ V ⊗(k+k′)

descends to a wedge-product map

ΛkV ⊗ Λk′V −→ Λk+k′V

that sends (v1 ∧ · · · ∧ vk)⊗ (vk+1 ∧ · · · ∧ vk+k′) to

v1 ∧ · · · ∧ vk ∧ vk+1 ∧ · · · ∧ vk+k′ ,

and extends linearly to arbitrary linear combinations of such generators.
Likewise, for any vector bundle E −→M , there are surjective wedge-product
bundle homomorphisms

(17.1) ΛkE ⊗ Λk′E −→ Λk+k′E.

For instance, if rank E = r, E is orientable, and k + k′ = r, then ΛrE
is isomorphic to the trivial bundle O = M × R or M × C. Any choice of
isomorphism ΛrE −→ O then induces an isomorphism

ΛkE ⊗ Λr−kE −→ O

that identifies ΛkE with the dual of Λr−kE.

155
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Exercise 17.1. Let V be an n-dimensional vector space F = R or C. Show
that every α ∈ Λn−1V is the wedge of n− 1 vectors; i.e.

α = v1 ∧ · · · ∧ vn−1, vi ∈ V ∀ i = 1, . . . , n− 1.

For n = 4, give an example of α ∈ Λ2R4 that can cannot be written as
v1 ∧ v2.

Exercise 17.2. Let η ∈ Λ2V where V is some vector space over F = R or
C. Show that there exists a basis e1, e2, .... for V such that

η = e1 ∧ e2 + · · ·+ e2r−1 ∧ e2r
for some r ≥ 0.

The exterior products of the cotangent bundle play a central role in differen-
tial geometry, both in the smooth and holomorphic settings. Given a smooth
or holomorphic manifold M , sections of ΛkT ∗M are called differential k-
forms and are fundamental objects in modern geometry and mathematical
physics: they provide a coordinate-free language for multivariable calculus,
encode topological invariants through de Rham cohomology, and generalize
holomorphic functions in the complex analytic context. In the holomorphic
category, the sheaves of holomorphic differential forms carry rich algebraic
and geometric information, playing a key role in Hodge theory and the study
of complex and Kähler manifolds. In this section, we delve into these def-
initions. The wedge product defined above turns the space of differential
forms into a non-commutative algebra.

Definition 17.3. Given a smooth manifold M , a differential k-form on
M is a section of ΛkT ∗M . The space of differential k-forms on M will be
denoted by Ωk(M).

If φ : U → V ⊂ Rm is a chart with coordinates (x1, . . . , xm) on Rm, then
dx1, . . . , dxm form the natural frame for T ∗M |U = T ∗V , and every k-form
η on V can be written as

η =
∑

i1<···<ik

ai1···ik(x) dxi1 ∧ · · · ∧ dxik ,

where the coefficients ai1···ik are smooth functions on V .

Globally, given an atlas

A = {φα : Uα → Vα}
on M , a differential k-form η on M corresponds, by (12.1), to a collection
of local k-forms ηα on Vα satisfying the compatibility condition

(17.2) ηα|Vβ,α
= φ∗

α 7→β

(
ηβ|Vα,β

)
,

on the overlap Vα,β = φα(Uα ∩ Uβ) = Vα ∩ φ−1
α 7→β(Vβ).
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Here, the pullback map

φ∗
α 7→β : Ω

k(Vβ) −→ Ωk(Vα)

is induced by the pullback of 1-forms. If x = (x1, . . . , xm) are coordinates
on Vα and y = (y1, . . . , ym) are coordinates on Vβ, with y = y(x) = φα 7→β(x)
on the overlap, then ηβ has the form

ηβ =
∑

i1<···<ik

bi1···ik(y) dyi1 ∧ · · · ∧ dyik ,

and the pullback is given by

φ∗
α 7→β(ηβ) =

∑
i1<···<ik

bi1···ik(y(x)) dyi1(x) ∧ · · · ∧ dyik(x).

To express the right-hand side in terms of the basis dxj , one applies the
chain rule to each 1-form dyj , expanding it as

dyj(x) =

m∑
i=1

∂yj
∂xi

dxi.

Example 17.4. For k = m = dimM , ηβ = b(y)dy1 ∧ · · · ∧ dym, ηα =
a(x)dx1 ∧ · · · ∧ dxm and the compatibility relation reads

φ∗
α 7→β(ηβ) = b(y(x)) dy1(x) ∧ · · · ∧ dym(x)

= b(y(x)) det(dφα 7→β)dx1 ∧ · · · ∧ dxm = a(x) dx1 ∧ · · · ∧ dxm.

Therefore,

a(x) = b(y(x)) det(dφα 7→β).

For k = 0, Λ0T ∗M =M×R; therefore, a differential 0-form is nothing but a
smooth function onM . For k = 1, as we briefly studied earlier, a differential
1-form is a section of cotangent bundle T ∗M . The duality pairing

Γ(M,TM)⊗ Ω1(M) −→ C∞(M,R)

between smooth vector fields and differential 1-forms takes as input a pair of
a vector field ξ and a differential form η and returns a function η(ξ) obtained
by point-wise action of η on ξ. More generally, we have the following.

For every k ≥ 1, there is a natural degree-decreasing pairing

Γ(M,TM)⊗ Ωk(M) −→ Ck−1(M,R)

called contraction by a vector field, denoted by

ξ ⊗ η 7−→ ιξη

between every vector field ξ ∈ Γ(M,TM) and k-form η ∈ Ωk(M).
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More precisely, every η ∈ Ωk(M) is a pointwise skew-symmetric k-linear
map on the tangent bundle, and ιξη is defined by inserting ξ as the first
input. In other words, for every ζ1, . . . , ζk−1 ∈ Γ(M,TM), the (k−1)-form
ιξη acts as

(ιξη)(ζ1, . . . , ζk−1) = η(ξ, ζ1, . . . , ζk−1).

By (17.1), there is a wedge product map

Ωk(M)⊗ Ωk′(M) −→ Ωk+k′(M)

that is locally given by ∑
i1<···<ik

ai1···ik dxi1 ∧ · · · ∧ dxik

⊗

 ∑
j1<···<jk′

bj1···jk′ dxj1 ∧ · · · ∧ dxjk′

 7→

∑
i1<···<ik

∑
j1<···<jk′

ai1···ikbj1···jk′ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjk′ .

Of course, if the index sets {i1, . . . , ik} and {j1, . . . , jk′} have an index in
common, then

dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjk′ = 0.

Otherwise, one can reorder the union into increasing order at the cost of
possibly introducing a sign.

Also, with the same notation, the contraction between

ξ =
m∑
j=1

bj ∂xj

and

η =
∑

i1<···<ik

ai1···ik dxi1 ∧ · · · ∧ dxik

returns

ιξη =
∑

i1<···<ik

k∑
c=1

(−1)c−1bicai1···ik dxi1 ∧ · · · ∧ dxic−1 ∧ dxic+1 ∧ · · · ∧ dxik .

The reason for the sign (−1)c−1 is that we first move dxic to the first po-
sition before evaluating it on bic ∂xic

. This requires commuting past c − 1

differentials, introducing a sign of (−1)c−1.

Note that, since every differential k-form is a skew-symmetric k-linear map
on sections of the tangent bundle, we have

ιξ ◦ ιξ = 0.
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Among all differential forms on a smooth manifold, those of top degree – i.e.,
forms of degree equal to the dimension of the manifold – play a distinguished
role in extending the notions of classical calculus to the setting of manifolds.
These forms are precisely the ones that can be integrated over oriented
manifolds and thus serve as the foundation for a coordinate-free formulation
of integration theory, culminating in powerful generalizations such as Stokes’
theorem.

Definition 17.5. A volume form on a smooth m-manifold M is a differ-
ential form ω ∈ Ωtop(M) ..= Ωm(M) that is nowhere vanishing. In other
words, a volume form is a nowhere zero section of Λtop(T ∗M).

Since there is a one-to-one correspondence between nowhere vanishing sec-
tions of a line bundle and its trivializations, a smooth manifold M admits a
volume form if and only if Λtop(T ∗M) ∼=M ×R. As Λtop(T ∗M) is the dual
of Λtop(TM), the triviality of one implies the triviality of the other. Hence,
M admits a volume form if and only if it is orientable.

Furthermore, there is a one-to-one correspondence between volume forms
and isomorphisms det(T ∗M) = Λtop(T ∗M) ∼=M ×R, and between orienta-
tions on M and volume forms up to multiplication by a positive function.

If φ : U → V ⊂ Rm is a chart with coordinates (x1, . . . , xm) on Rm, then
every m-form ω admits a local expression

ω|U = f(x) dx1 ∧ · · · ∧ dxm

for some smooth function f(x). If ω is a volume form, then f(x) is nowhere
zero. If M is oriented and φ belongs to the oriented atlas of M , then a
volume form is compatible with the orientation if and only if f(x) > 0.

Once again, an orientation corresponds to a choice of trivialization

Λtop(T ∗M) ∼=M × R

up to rescaling by a positive function, and a volume form compatible with
the orientation corresponds to a positive multiple of the constant section 1
of M × R.

Proposition 17.6. Suppose M is an oriented smooth manifold and g is
a Riemannian metric on M . If φ : U → V ⊂ Rm is a chart with coor-
dinates (x1, . . . , xm) on Rm, let

[
gij(x)

]
denote the positive-definite matrix

representing the metric g in these coordinates. Define the local m-form

ωg,φ =
√

det[gij(x)] dx1 ∧ · · · ∧ dxm.

As φ varies over the positively oriented charts ofM , the locally defined forms
ωg,φ agree on chart overlaps and therefore assemble into a global volume form
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on M , denoted by ωg, which is canonically associated to the metric g and
the chosen orientation on M .

In other words, every Riemannian metric on an oriented manifold deter-
mines a canonical volume form.

Proof. Suppose φ1 : U1 → V1 ⊂ Rm and φ2 : U2 → V2 ⊂ Rm are two
overlapping charts with coordinates (x1, . . . , xm) on V1 and (y1, . . . , ym) on
V2, respectively.

By (17.2), the local volume forms ωg,φ1 and ωg,φ2 are compatible on the
overlap if and only if

ωg,φ1 = φ∗
17→2(ωg,φ2).

By (16.1), the transformation rule for the metric tensor gives:

det[gij(x)] = det
(
dφT

17→2 [gij(y)] dφ17→2

)
= det[gij(y)] · det(dφ17→2)

2.

Also, by (14.3), the pullback of the standard volume form transforms as:

(17.3) φ∗
17→2(dy1 ∧ · · · ∧ dym) = det(dφ17→2) dx1 ∧ · · · ∧ dxm.

Since both charts belong to the positively oriented atlas of M , we have
det(dφ17→2) > 0. Therefore, the pullback of ωg,φ2 under φ17→2 is computed
as:

φ∗
17→2(ωg,φ2) = φ∗

17→2

(√
det[gij(y)] dy1 ∧ · · · ∧ dym

)
=
√

det[gij(y(x))] · φ∗
17→2(dy1 ∧ · · · ∧ dym)

=

√
det[gij(x)]

det(dφ1 7→2)2
· det(dφ17→2) dx1 ∧ · · · ∧ dxm

=
√

det[gij(x)] dx1 ∧ · · · ∧ dxm
= ωg,φ1 .

Thus, the local expressions ωg,φ agree on overlaps, and define a global
smooth volume form on M . □

The proposition above provides a method for finding volume forms on any
oriented manifold. The following result serves the same purpose for mani-
folds realized as level sets of smooth functions in ambient manifolds equipped
with a natural volume form, such as Rm with the standard volume form
ωstd = dx1 ∧ · · · ∧ dxm.

Lemma 17.7. Suppose f : M → R is a smooth function on a manifold
equipped with a volume form ωM , q ∈ R is a regular value, and Y = f−1(q) ⊂
M is the corresponding level set. Also, suppose ξ is a vector field defined
on a neighborhood of Y (or simply a section of TM |Y ) such that ξ is not



17. Differential forms 161

tangent to Y along Y . Then the restriction ωY of ιξωM to Y is a volume
form on Y .

Proof. Since ξ is not tangent to Y along Y , we have

TM |Y = TY ⊕ R · ξ.

Therefore, if dimM = m, then for every p ∈ Y and every frame v1, . . . , vm−1

for TpY , the tuple

(ξ(p), v1, . . . , vm−1)

is a frame for TpM . By the definition of a volume form, we have

ωM |p(ξ(p), v1, . . . , vm−1) ̸= 0.

It follows that

ωY |p(v1, . . . , vm−1) = (ιξωM )|p(v1, . . . , vm−1) = ωM |p(ξ(p), v1, . . . , vm−1) ̸= 0.

Therefore, ωY is a volume form on Y . □

The construction above requires a vector field that is not tangent to Y along
Y . A natural way to obtain such a vector field is by considering the gradient
vector field of f with respect to some Riemannian metric on M ; see (16.2).
This is particularly straightforward whenM = Rm with the standard metric.
We can further normalize ∇f to

n⃗ =
∇f
|∇f |

to obtain a unit-length vector field that is orthogonal to TY . For this
orthonormal vector field, we have the following.

Exercise 17.8. Suppose M is an oriented manifold equipped with a Rie-
mannian metric g. Let ω denote the volume form of g in the sense of Propo-
sition 17.6. Suppose f : M → R is a smooth function, q ∈ R is a regular
value, and Y = f−1(q) ⊂ M is the corresponding level set. Let gY denote
the induced metric on Y , and let ωY denote the volume form of gY . Also,
let

n⃗ =
∇f
|∇f |

, and ω′
Y = ιn⃗ω

denote the volume form on Y induced via Lemma 17.7. Show that

ωY = ±ω′
Y ,

where the sign depends on the convention for the induced orientation on Y
and the direction of n⃗.
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Example 17.9. Consider the unit sphere S2 = f−1(1) ⊂ R3, where f(x, y, z) =
x2 + y2 + z2. The gradient vector field of f with respect to the standard
metric is

∇f = 2(x∂x + y∂y + z∂z),

which gives the orthonormal vector field

x∂x + y∂y + z∂z

along S2. The volume form on R3 with respect to the standard metric is
simply

dx ∧ dy ∧ dz.
Therefore, the induced volume form (area form) on S2 is the restriction of
the 2-form

ιx∂x+y∂y+z∂z(dx ∧ dy ∧ dz) = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

to S2.

Exercise 17.10. Let ωm denote the volume form of the induced metric on
Sm defined by embedding Sm as the unit sphere in Rm+1. Show that on each
open hemisphere x0 ̸= 0, this volume form coincides with the restriction of

1

x0
dx1 ∧ . . . ∧ dxm

to Sm.

Exercise 17.11. Let M be a smooth orientable m-manifold, and suppose
that ω is a volume-form. Show that every point of M is included in a chart
with coordinates (x1, x2, . . . , xm) such that ω = dx1 ∧ . . .∧ dxm. Use this to
prove that a smooth manifold is orientable iff it admits a smooth atlas whose
coordinate transition functions φ : (x1, x2, . . . , xm) −→ (y1, y2, . . . , ym) all
satisfy det dφ ≡ 1.
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Solutions to exercises

Exercise 17.1. Wedging with α defines a non-trivial linear map

V −→ F, v 7−→ α ∧ v ∈ ΛnV ∼= F.

The kernel of this map is an (n − 1)-dimensional subspace of V generated
by a set of (n−1) vectors v1, . . . , vn−1. Choose vn ∈ V such that α∧vn ̸= 0.
Clearly, v1, . . . , vn is a basis for V . Thus, v1 ∧ · · · ∧ vn generates ΛnV .

Suppose

α ∧ vn = λ v1 ∧ · · · ∧ vn
for some λ ̸= 0. Then, both α and λ v1 ∧ · · · ∧ vn−1 define the same linear
maps on V , and therefore they must be equal. We conclude that

α = (λv1) ∧ v2 ∧ · · · ∧ vn−1

is a wedge of (n− 1) vectors.

For V = R4, let

α = e1 ∧ e2 + e3 ∧ e4 ∈ Λ2R4.

Wedging with α defines a linear map

R4 −→ Λ3R4 ∼= R4

given by

e1 7−→ e1 ∧ α = u2 ..= e1 ∧ e3 ∧ e4,
e2 7−→ e2 ∧ α = u1 ..= e2 ∧ e3 ∧ e4,
e3 7−→ e3 ∧ α = u4 ..= e1 ∧ e2 ∧ e3,
e4 7−→ e4 ∧ α = u3 ..= e1 ∧ e2 ∧ e4.

The matrix of this linear map with respect to the basis (e1, e2, e3, e4) on the
domain and (u1, u2, u3, u4) on the target is

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


which has rank 4.

On the other hand, any decomposable element v1 ∧ v2 ∈ Λ2R4 defines a
linear map

R4 −→ Λ3R4 ∼= R4

of rank 2. Therefore, α cannot be written as v1 ∧ v2. □
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Exercise 17.2. Suppose e1, e2, . . . is an arbitrary basis for V . Then, every
element η ∈ Λ2V is a linear combination

η =
∑
i<j

aij ei ∧ ej .

To write this symmetrically – and since u ∧ w = −w ∧ u for all u,w ∈ V –
we can express η in the form

η =
∑
i,j

bij ei ∧ ej ,

where bii = 0 and bij = −bji = aij/2 for all i < j. In other words, once
a basis is fixed, there is a one-to-one correspondence between elements η ∈
Λ2V and skew-symmetric matrices B = [bij ].

If e′1, e
′
2, . . . is another basis, with change of basis matrix Θ = [θij ] such that

e′j =
∑
i

θji ei,

then the skew-symmetric matrices B and B′ corresponding to the bases {ei}
and {e′i} are related by

B′ = ΘTBΘ.

Therefore, Exercise 17.2 is equivalent to showing that for every skew-symmetric
matrix B, there exists an invertible matrix Θ such that ΘTBΘ is of the form

[
0 1
−1 0

]
0 · · · 0

0

[
0 1
−1 0

]
· · · 0

...
...

. . .
...

0 0 · · · 0


The latter is a classical result in linear algebra; see [Lan89, Theorem 4.4].

□

Exercise 17.8. Suppose M is an oriented manifold equipped with a Rie-
mannian metric g. Let ω denote the volume form of g in the sense of Propo-
sition 17.6. Suppose f : M → R is a smooth function, q ∈ R is a regular
value, and Y = f−1(q) ⊂ M is the corresponding level set. Let gY denote
the induced metric on Y , and let ωY denote the volume form of gY . Also,
let

n⃗ =
∇f
|∇f |

, and ω′
Y = ιn⃗ω

denote the volume form on Y induced via Lemma 17.7. Show that

ωY = ±ω′
Y ,
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where the sign depends on the convention for the induced orientation on Y
and the direction of n⃗.

Exercise 17.10. The hemisphere Sm ∩ (x0 > 0) is the graph of

x0 = φ(x1, . . . , xm) =

√√√√1−
m∑
i=1

x2i

over the unit ball B1(0) ⊂ Rm.

Similarly to Example 17.9, the volume form ωm is obtained by contracting
the standard volume form dx0 ∧ · · · ∧ dxm on Rm+1 with the vector field

x0∂x0 + · · ·+ xm∂xm ,

and restricting the resulting m-form to Sm; that is,

ωm =

(
m∑
i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

)∣∣∣∣
Sm

.

The question asks us to show that this coincides with(
1

x0
dx1 ∧ · · · ∧ dxm

) ∣∣∣∣
Sm

.

To show this, we compute the pullbacks of both forms by φ and verify they
agree on the domain B1(0) of the chart.

We have

φ∗dx0 = dφ =
m∑
i=1

∂φ

∂xi
dxi = −

m∑
i=1

xi
φ
dxi = −

m∑
i=1

xi
x0
dxi.

Therefore,

φ∗

(
m∑
i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

)

=
1

x0

(
x20 dx1 ∧ · · · ∧ dxm +

m∑
i=1

x2i dx1 ∧ · · · ∧ dxm

)

=
1

x0
dx1 ∧ · · · ∧ dxm.

The computation on the other half is similar. □

Exercise 17.11. Suppose φ : U −→ V ⊂ Rm is a chart compatible with
the orientation. With respect to the local coordinates (x1, . . . , xm) on V we
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have
ω|U = f(x)dx1 ∧ · · · ∧ dxm

for some positive function f . At the cost of shrinking U and V we may
assume V = (−ϵ, ϵ) × V ′ for some open subset V ′ ⊂ Rm−1. For every
x′ = (x2, . . . , xm) ∈ V ′ let

y1(x1, x
′) =

∫ x1

0
f(t, x′)dt.

Since f > 0, y1 is an increasing function of x1. Therefore, the composition

U
φ−→ (−ϵ, ϵ)× V ′ (x1,x′)→(y1,x′)−−−−−−−−−→ Rm

define a new chart map φ̃ : U −→ Rm with respect to which

ω|U = dy1 ∧ dx2 ∧ · · · ∧ dxm.
Let M be a smooth orientable m-manifold, and suppose that ω is a volume-
form. Show that every point of M is included in a chart with coordinates
(x1, x2, . . . , xm) such that ω = dx1 ∧ . . . ∧ dxm.

Covering M with a collection of such charts {φα : Uα −→ Vα}, it is clear
from Example 17.4 that the transition functions φα 7→β = φβ ◦ φ−1

α satisfy
det dφα 7→β ≡ 1. By Proposition 15.8, the converse holds as well. □



Chapter 18

Exterior derivative and
cohomology

The exterior derivative is a fundamental operator in differential geometry
that extends the concept of differentiation to differential forms on smooth
manifolds. It takes a k-form to a (k + 1)-form in a way that generalizes
classical notions such as the gradient, curl, and divergence from vector cal-
culus. Defined intrinsically and without reliance on coordinates, the exterior
derivative d is linear, satisfies the graded Leibniz rule with respect to the
wedge product, and is nilpotent: d2 = 0. Notably, such a canonical differen-
tial operator does not exist on the exterior powers of the tangent bundle or
on arbitrary tensor fields; defining a derivation in those contexts typically
requires additional geometric structure (such as a connection). In contrast,
the cotangent bundle and its exterior algebra – i.e., the differential forms –
admit a natural and elegant differential calculus, making them more flexible
and powerful tools for encoding geometry and topology.

Recall that given a smooth function f : M −→ R, the derivative of f can be
seen as a differential 1-form that in local coordinates takes the form

(18.1) df =
∑ ∂f

∂xi
dxi.

The operator d : Ω0(M) −→ Ω1(M) locally defined as above is globally well-
defined because of the chain rule and how a collection of local differential
forms define a global form in (17.2). The same reasoning extends to all
differential forms and yields exterior differentiation maps

d : Ωk(M) −→ Ωk+1(M)

for all k ≥ 0. More precisely, first, we prove the following lemma.

167
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Definition 18.1. Given an open subset V ⊂ Rm and any k-form

η =
∑

i1<···<ik

ai1···ik(x) dxi1 ∧ · · · ∧ dxik

on V , the exterior derivative of η is the (k + 1)-form

dη ..=
∑

i1<···<ik

dai1···ik(x) ∧ dxi1 ∧ · · · ∧ dxik ,

where dai1···ik(x) should be expanded as in (18.1). In particular, d(dxi1 ∧
· · · ∧ dxik) = 0.

Lemma 18.2. Pullback of differential forms by any smooth map

f : V ⊂ Rm −→ V ′ ⊂ Rn

commutes with d; i.e. f∗ ◦ d = d ◦ f∗.

Proof. Let (x1, . . . , xm) and (y1, . . . , yn) denote the coordinates on the do-
main and target, respectively, with y = y(x) = f(x). Since both f∗ and d
are R-linear, it is enough to confirm the claim on a single term

η = b(y) dyi1 ∧ · · · ∧ dyik .

We have

f∗η = b(y(x)) dyi1(x)∧· · ·∧dyik(x) = b(y(x))
∑

j1,...,jk

∂yi1
∂xj1

· · · ∂yik
∂xjk

dxj1∧· · ·∧dxjk ,

where the sum runs over all tuples (j1, . . . , jk) with distinct indices ja ̸= jb
for a ̸= b.

Therefore, using the product rule,

df∗η =
∑

j1,...,jk

d

(
b(y(x))

∂yi1
∂xj1

· · · ∂yik
∂xjk

)
dxj1 ∧ · · · ∧ dxjk

= d b(y(x)) ∧
∑

j1,...,jk

∂yi1
∂xj1

· · · ∂yik
∂xjk

dxj1 ∧ · · · ∧ dxjk

+ b(y(x))
∑

j1,...,jk

d

(
∂yi1
∂xj1

· · · ∂yik
∂xjk

)
dxj1 ∧ · · · ∧ dxjk

= d b(y(x)) ∧ dyi1(x) ∧ · · · ∧ dyik(x)

+ b(y(x))
∑

j0,j1,...,jk

∂
(

∂yi1
∂xj1

· · · ∂yik
∂xjk

)
∂xj0

dxj0 ∧ dxj1 ∧ · · · ∧ dxjk .

On the other hand,

dη = d b(y) ∧ dyi1 ∧ · · · ∧ dyik
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and

f∗dη = d b(y(x)) ∧ dyi1(x) ∧ · · · ∧ dyik(x).

Therefore, to prove the lemma, it suffices to show that

∑
j0,j1,...,jk

∂
(

∂yi1
∂xj1

· · · ∂yik
∂xjk

)
∂xj0

dxj0 ∧ dxj1 ∧ · · · ∧ dxjk = 0.

By the product rule, we can expand the expression as∑
j0,j1,...,jk

k∑
a=1

∂2yia
∂xj0∂xja

∏
c ̸=a

∂yic
∂xjc

 dxj0 ∧ dxj1 ∧ · · · ∧ dxjk .

Now observe that switching j0 and ja keeps
∂2yia

∂xj0
∂xja

unchanged but flips the

sign of the wedge product. Therefore, each term in the sum appears with
equal magnitude and opposite sign, so the total sum vanishes. □

Lemma 18.3. The operator d in Definition 18.1 satisfies d ◦ d = 0 and

d(η1 ∧ η2) = dη1 ∧ η2 + (−1)deg(η1)η1 ∧ dη2.

Proof. The proof of the first statement is similar to the vanishing argument
above. We have

d ◦ d (a(x) dxi1 ∧ · · · ∧ dxik) = d
∑
i0

∂a(x)

∂xi0
dxi0 ∧ dxi1 ∧ · · · ∧ dxik

=
∑
i0,i′0

∂2a(x)

∂xi′0∂xi0
dxi′0 ∧ dxi0 ∧ dxi1 ∧ · · · ∧ dxik .

Switching i0 and i′0 keeps the second derivative term unchanged but negates
the wedge product. Hence the terms in the double sum cancel in pairs.

For the second statement, apply the product rule. To apply d to η2, we must
move it before η1 and then return dη2 to the correct position. The first
step introduces deg(η1) deg(η2) transpositions, and the second introduces
deg(η1)(deg(η2) + 1). Thus, the total sign is

(−1)2 deg(η1) deg(η2)+deg(η1 = (−1)deg(η1).

□

Corollary 18.4. Given a smooth manifold M , for every k ≥ 0, there is a
global exterior differentiation map

(18.2) d : Ωk(M) −→ Ωk+1(M)

such that:

(1) locally in every chart it is given by Definition 18.1;
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(2) d ◦ d = 0;

(3) d(η1 ∧ η2) = dη1 ∧ η2 + (−1)kη1 ∧ dη2 for all η1 ∈ Ωk(M) and
η2 ∈ Ωℓ(M);

(4) if f : M → N is a smooth map between manifolds, then f∗ ◦ d =
d ◦ f∗.

Proof. Recall from (17.2) that given an atlas

A = {φα : Uα → Vα}

on M , a differential k-form η on M corresponds, by (12.1), to a collection
of local k-forms ηα on Vα satisfying the compatibility condition

(18.3) ηα|Vβ,α
= φ∗

α 7→β

(
ηβ|Vα,β

)
,

on the overlaps Vα,β. By Lemma 18.2, for every α and β we have

dηα = d
(
φ∗
α 7→βηβ

)
= φ∗

α 7→β (dηβ)

on the overlaps. Therefore, the locally defined exterior derivatives d are
compatible and define a global exterior differentiation map

d : Ωk(M) −→ Ωk+1(M).

Item 1 holds by construction. Items 2–4 are local properties and thus follow
from the two lemmas above. □

Considering the operators d in (18.2) for all k ≥ 0 results in a sequence

(18.4) 0 −→ Ω0(M)
d−→ Ω1(M)

d−→ · · · −→ ΩdimM (M)
d−→ 0

that is an example of a cochain complex over the field of real numbers.

Definition 18.5. Suppose {Ak} is a collection of abelian groups or vector
spaces, and

· · · −→ Ak−1
d−→ Ak

d−→ Ak+1 −→ · · ·

is a sequence of additive (or linear) maps between them. We say this is a
cochain complex if d ◦ d = 0. The cohomology groups of a cochain
complex (A•, d) are the quotient abelian groups or vector spaces

Hk(A•, d) =
ker(d : Ak → Ak+1)

Im(d : Ak−1 → Ak)
.

An element in the kernel of d : Ak → Ak+1 is called closed, and an element
in the image of d : Ak−1 → Ak is called exact. Thus, the k-th cohomology
group measures closed elements in Ak up to addition by exact ones.
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The field of homological algebra provides a general framework for study-
ing algebraic structures through sequences of abelian groups or vector spaces
connected by differential operators, known as cochain or chain complexes.
These complexes arise naturally across many areas of mathematics, includ-
ing topology, geometry, and algebra, and their associated cohomology groups
capture essential structural and invariance properties.

In this course, we focus only on one particular example: the so-called de
Rham cochain complex in (18.4), where the vector spaces are the spaces
of differential forms on a smooth manifold and the differential is given by
the exterior derivative. The resulting cohomology groups are called the de
Rham cohomology groups and are denoted by

Hk
dR(M,R) =

ker
(
d : Ωk(M) −→ Ωk+1(M)

)
Im (d : Ωk−1(M) −→ Ωk(M))

or simply Hk(M,R).

Example 18.6. The 0-th cohomology group of any manifold is the vector
space of locally-constant functions onM . Therefore, ifM is connected, then

H0(M,R) ∼= R.

Exercise 18.7. Find the degree one de Rham cohomology groups of R and
S1.

Exercise 18.8. Show that wedge product between differential forms de-
scends to a product structure between de Rham cohomology classes making
the total cohomology group H∗(M) =

⊕
kH

k(M) a ring.

We will learn about a few results and techniques for calculating the coho-
mology groups of more complicated spaces in future sections.

When dealing with non-compact manifolds such as Rm, it is often useful
to restrict attention to differential forms with compact support. For every
k ≥ 0, let Ωk

c (M) ⊂ Ωk(M) denote the subspace of differential k-forms with
compact support; that is, every η ∈ Ωk

c (M) vanishes outside a compact
subset of M .

For each k ≥ 0, the exterior derivative map

d : Ωk(M) −→ Ωk+1(M)

restricts to a map
d : Ωk

c (M) −→ Ωk+1
c (M).

Therefore, we obtain a compactly supported de Rham complex

(18.5) 0 −→ Ω0
c(M)

d−→ Ω1
c(M)

d−→ · · · −→ ΩdimM
c (M)

d−→ 0,
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which gives rise to the compactly supported de Rham cohomology groups

Hk
c,dR(M,R) =

ker
(
d : Ωk

c (M) −→ Ωk+1
c (M)

)
Im
(
d : Ωk−1

c (M) −→ Ωk
c (M)

) ,
often denoted more simply byHk

c (M,R). IfM is compact, then these groups
coincide with the usual de Rham cohomology groups Hk(M,R). For non-
compact manifolds, however, the compactly supported cohomology groups
differ in general and provide additional topological information.

Exercise 18.9. Find the compactly supported de Rham cohomology groups
of R.
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Solutions to exercises

Exercise 18.7. Since dimR = dimS1 = 1, every 1-form on R and S1 is
automatically closed. We need to find the subspace of exact 1-forms.

Starting with R, every 1-form is a function multiple of dx where x is the
global variable of R. For every smooth 1-form f(x) dx, let

F (x) =

∫ x

0
f(t) dt.

By the Fundamental Theorem of Calculus, dF = f dx. Therefore, every
1-form is exact and H1(R,R) = 0.

Thinking of S1 as R/Z where Z acts by translations by integers, since the
1-form dx on R is invariant under the action of Z, it descends to a nowhere
vanishing 1-form on S1. Furthermore, every 1-form on S1 is of the form
f(x) dx for some function f on S1 which corresponds to a 1-periodic (i.e.
f(x+1) = f(x)) function on R. For f(x) dx to be exact on S1, i.e. f(x) dx =
dF (x) for some 1-periodic function F , we must have

0 = F (1)− F (0) =

∫ 1

0
f(t) dt.

Conversely, if
∫ 1
0 f(t) dt = 0, the function F (x) =

∫ x
0 f(t) dt is 1-periodic

and dF = f(x) dx. For every 1-form f(x) dx, we have

f(x) dx = a dx+ (f(x)− a) dx,

where a =
∫ 1
0 f(t) dt and

∫ 1
0 (f(t)− a) dt = 0. We conclude that f(x) dx and

a dx have the same image in the quotient space

H1
dR(S

1,R) =
Ω1(S1)

Im (d : Ω0(S1) −→ Ω1(S1))
.

Therefore, the class of dx in H1
dR(S

1,R) is a generator and

H1
dR(S

1,R) ∼= R. □

Exercise 18.8. To show that wedge product between differential forms
descends to a product structure between de Rham cohomology classes, we
must show that

• the wedge product of two closed forms is closed;

• the wedge product of a closed and an exact form is exact.

If η1 and η2 are two closed forms, then by Corollary 18.4.3, η1 ∧ η2 is closed
as well.
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Further, if η1 = dϑ, then

d(ϑ ∧ η2) = dϑ ∧ η2 ± ϑ ∧ dη2 = dϑ ∧ η2 = η1 ∧ η2,
proving the second property listed above. □

Exercise 18.9. The only compactly supported function f satisfying df = 0
is the trivial constant function 0. Therefore,

H0
c,dR(R,R) = ker

(
d : Ω0

c(R) −→ Ω1
c(R)

)
= 0.

If a compactly supported 1-form f(x) dx is of the form dF for some com-
pactly supported function F , then∫ ∞

−∞
f(t) dt = F (+∞)− F (−∞) = 0.

Conversely, if
∫∞
−∞ f(t) dt = 0, then the function

F (x) =

∫ x

−∞
f(t) dt

is compactly supported and satisfies dF = f(x) dx. Therefore, the R-linear
map ∫

: Ω1
c(R) −→ R, f(x) dx 7−→

∫ ∞

−∞
f(x) dx

descends to an isomorphism∫
: H1

c,dR(R,R) =
Ω1
c(R)

Im (d : Ω0
c(R) −→ Ω1

c(R))
∼=−−→ R.

□



Chapter 19

Curl, Divergence, and
d ◦ d = 0

Two fundamental identities in 3-dimensional vector calculus are

(19.1) ∇× (∇f) = 0 and ∇ · (∇× X⃗) = 0.

The first identity states that the curl of a gradient is always zero, mean-
ing the gradient of a scalar field is irrotational. The second states that the
divergence of a curl is always zero, implying that the curl of a vector
field is divergence-free. These identities are consequences of the symmetry
of second derivatives and form the backbone of many theoretical results in
vector calculus. In physics, they are deeply tied to the structure of Maxwell’s

equations: for example, the identity ∇ · (∇ × X⃗) = 0 ensures the absence
of magnetic monopoles in classical electromagnetism. Similarly, the irrota-
tional nature of conservative force fields, such as gravitational or electro-
static fields, follows from ∇ × (∇f) = 0. These properties are also central
in the formulation of potential theory and in the analysis of fluid flow and
electromagnetic fields.

In this lecture, we show that these results are equivalent to the identity d◦d
on differential forms.

Definition 19.1. For a smooth function f : V ⊂ R3 → R, the gradient
vector field of f is

∇f =
3∑

i=1

∂f

∂xi
∂xi .

175



176 19. Curl, Divergence, and d ◦ d = 0

This is a special case of (16.2) where the standard metric on R3 is used. For
a vector field

X =
3∑

i=1

ai(x) ∂xi

on V ⊂ R3, the curl of X, denoted by ∇×X, is the vector field

∇×X = det

∂x1 ∂x2 ∂x3
∂

∂x1

∂
∂x2

∂
∂x3

a1 a2 a3

 ,
which expands to

∇×X =

(
∂a3
∂x2

− ∂a2
∂x3

)
∂x1 +

(
∂a1
∂x3

− ∂a3
∂x1

)
∂x2 +

(
∂a2
∂x1

− ∂a1
∂x2

)
∂x3 .

Lastly, the divergence of a vector field X is the scalar function

∇ ·X =
3∑

i=1

∂ai(x)

∂xi
.

The divergence of a vector field admits a generalization to any manifold
equipped with a volume form, which we will encounter later in this lecture.
In contrast, the notion of curl is intrinsically three-dimensional.

Theorem 19.2. For an open subset V ⊂ R3, let Vect(V ) denote the space
of smooth vector fields on V . Then the following diagram commutes:

C∞(V,R) ∇ //

id
��

Vect(V )
∇× //

(16.2)
��

Vect(V )
∇· //

ι(−)ωstd

��

C∞(V,R)

·ωstd

��
Ω0(V )

d // Ω1(V )
d // Ω2(V )

d // Ω3(V )

Here, the first column is the identity map between smooth functions; the sec-
ond column represents the identification in (16.2) between vector fields and
1-forms using the standard metric on R3; the third column is an isomor-
phism mapping a vector field X to the 2-form

ιXωstd = ιX(dx1 ∧ dx2 ∧ dx3);

and the last column identifies functions and 3-forms by mapping a function f
to the 3-form f ωstd = f dx1∧dx2∧dx3. In other words, there is a dictionary
(i.e. identification of vector spaces) between the top and bottom rows such
that the vector calculus identities in (19.1) correspond to the differential
form identity d ◦ d = 0.

Proof. The proof is purely computational, as all the maps have explicit
formulas. We go over each square for the sake of completeness.
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In the first square, using the standard metric from (16.2), the gradient ∇f
corresponds to the differential

df =
3∑

i=1

∂f

∂xi
dxi.

The second square commutes because

ι∇×Xωstd =

(
∂a3
∂x2

− ∂a2
∂x3

)
dx2 ∧ dx3

+

(
∂a1
∂x3

− ∂a3
∂x1

)
dx3 ∧ dx1 +

(
∂a2
∂x1

− ∂a1
∂x2

)
dx1 ∧ dx2

is equal to

d(a1 dx1 + a2 dx2 + a3 dx3) = −∂a1
∂x2

dx1 ∧ dx2 −
∂a1
∂x3

dx1 ∧ dx3

+
∂a2
∂x1

dx1 ∧ dx2 −
∂a2
∂x3

dx2 ∧ dx3

+
∂a3
∂x1

dx1 ∧ dx3 +
∂a3
∂x2

dx2 ∧ dx3

=

(
∂a3
∂x2

− ∂a2
∂x3

)
dx2 ∧ dx3

+

(
∂a1
∂x3

− ∂a3
∂x1

)
dx3 ∧ dx1

+

(
∂a2
∂x1

− ∂a1
∂x2

)
dx1 ∧ dx2.

Finally, the last square commutes because

d
(
ι(

∑
ai ∂xi)

ωstd

)
= d (a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2)

=

(
3∑

i=1

∂ai(x)

∂xi

)
dx1 ∧ dx2 ∧ dx3.

□

Definition 19.3. Given a smooth manifold M with a volume form ω, the
divergence of a smooth vector field X with respect to ω is the unique
smooth function f = Divω(X) such that

d(ιXω) = fω.

Note that the interior product ιX decreases the degree of a differential form
by 1, and the exterior derivative d increases it by 1, returning to the degree
of ω. Since every top-degree form on M is a scalar multiple of the volume
form ω, the function f is well-defined.
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Definition 19.4. Given a smooth manifold M with a metric g, let ωg de-
note the canonical volume form associated to g. For every smooth function
f : M → R, the Laplacian of f , denoted by ∆f , is the function

∆f := Divωg(∇f),
where ∇f is the gradient vector field associated to f as in (16.2).

Exercise 19.5. Find an explicit formula for ∆f in terms of the partial
derivatives of f and the components gij(x) of the metric in an arbitrary
local coordinate chart x = (x1, . . . , xm). Also, if a vector field X has local
equation X =

∑
i ai(x) ∂xi , write an explicit equation for Divωg(X) in terms

of gij and partial derivatives of ai.

Exercise 19.6. Consider the upper half plane H with the Poincare metric

g = dx2+dy2

y2
. Let

X = (1 + x2 − y2)
∂

∂x
+ 2xy

∂

∂y
.

Show that
Divωg(X) = 0.

Is X gradient of a function?
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Solutions to exercises

Exercise 19.5. First, we find an explicit formula for Divωg(X).

Following the definition, we have

d
(
ιX
√

det[gkl(x)] dx1 ∧ · · · ∧ dxm
)
=

d

(
m∑
i=1

(−1)i−1ai
√

det[gkl(x)] dx1 ∧ · · · ∧ d̂xi · · · ∧ dxm

)
=

m∑
i=1

∂
(
ai
√

det[gkl(x)]
)

∂xi
dx1 ∧ · · · ∧ dxm =(

m∑
i=1

∂ai
∂xi

)
ωg +

1

2

(
m∑
i=1

ai
∂ log det[gkl]

∂xi

)
ωg.

Therefore,

Divωg(X) =

m∑
i=1

∂ai
∂xi

+
1

2

m∑
i=1

ai
∂ log det[gkl]

∂xi
.

Next, in order to compute ∆f , we apply the formula above to

X = ∇f =
∑
i,j

gij
∂f

∂xj
∂xi .

Since

ai =
∑
j

gij
∂f

∂xj
,

we get

∆f =
∑
i,j

gij
∂2f

∂xi∂xj
+
∑
i,j

∂gij

∂xi

∂f

∂xj
+

1

2

∑
i,j

gij
∂f

∂xj

∂ log det[gkl]

∂xi
.

If we directly use the formula for Laplacian we get the more compact formula:

∆f =
1√

det[gkl(x)]

∑
i,j

∂

∂xi

(√
det[gkl(x)] g

ij ∂f

∂xj

)
.

Remark 19.7. Note that the Laplacian is a second-order differential oper-
ator whose principal (second-order) part is∑

i,j

gij
∂2f

∂xi∂xj
,

corresponding to the action of the inverse metric on the Hessian of f . The
remaining lower-order terms account for the variation of the metric tensor
and the volume form.
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□

Exercise 19.6. The volume form of g with respect to the counter clock
wise orientation is

ωg = y−2dx ∧ dy
Therefore

ιXωg = (y−2 + x2y−2 − 1)dy − 2xy−1dx,

and
dιXωg =

(
2xy−2 − 2xy−2

)
dx ∧ dy = 0

For X to be the gradient of a function f , we must have

∇f = y2
(
∂f

∂x
∂x +

∂f

∂y
∂y

)
= (1 + x2 − y2)

∂

∂x
+ 2xy

∂

∂y
,

or equivalently,

(19.2)
∂f

∂x
= y−2(1 + x2 − y2), and

∂f

∂y
= 2xy−1.

Integrating the second equation with respect to y gives

f(x, y) = 2x ln(y) + g(x).

Differentiating this identity with respect to x yields

∂f

∂x
= 2 ln(y) + g′(x).

Equating with the earlier expression for ∂f
∂x gives

2 ln(y) + g′(x) = y−2(1 + x2 − y2),

or
g′(x) = y−2(1 + x2 − y2)− 2 ln(y).

This is a contradiction, since the left-hand side depends only on x, while the
right-hand side depends on both x and y.

One can also obtain a contradiction by differentiating the first equation in
(19.2) with respect to y, and the second one with respect to x, and observing
that the right-hand sides do not agree.

□



Chapter 20

Integration and Stokes’
Theorem

In multivariable calculus, we learn to integrate functions over regions in Rm.
In this lecture, we take a new point of view: we interpret a multivariable
integral ∫

V
f(x1, . . . , xm) dx1 · · · dxm

as the integral of an m-form, namely f(x1, . . . , xm) dx1 ∧ · · · ∧ dxm, over the
region V ⊂ Rm or V ⊂ Hm. This perspective not only clarifies the geometric
meaning of the integrand, but also extends naturally to general manifolds,
once orientation is properly accounted for. In fact, the familiar change of
variables formula involving the Jacobian determinant fits seamlessly into
this framework and shows that integration of top-degree forms on oriented
manifolds is well-defined.

Remark 20.1. Since manifolds with boundary play an important role in
integration on manifolds, we will be more precise in this section and take
charts to have image in Hm to account for the possibility of boundary.

Theorem 20.2. SupposeM is an oriented smooth m-manifold. There exists
an R-linear map ∫

M
: Ωm

c (M) −→ R

with the following property: if φ : U −→ V ⊂ Rm is a chart compatible
with the orientation, and η = f(x) dx1 ∧ · · · ∧ dxm is an m-form compactly

181
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supported in U , then∫
M
η =

∫
Rm

f(x1, . . . , xm) dx1 · · · dxm

in the sense of multivariable calculus.

Proof. Fix η ∈ Ωm
c (M) and let K be the (compact) support of η. Choose

a finite collection of charts

C = {φi : Ui −→ Vi ⊂ Hm}1≤i≤ℓ,

compatible with the orientation, such that

K ⊂
ℓ⋃

i=1

Ui.

IfM ̸= K, let U0 ⊂M be the complement ofK. Let {ϱi : Ui −→ [0, 1]}ℓi=0 be
a partition of unity subordinate to the open cover {Ui}ℓi=0, and set ηi = ϱiη.

Note that η0 = 0 and η =
∑ℓ

i=1 ηi. Since ηi is an m-form supported in Ui,
it has an expression

ηi = fi dx1 ∧ · · · ∧ dxm
for some smooth function fi compactly supported in Vi, and we define

Ii =

∫
Hm

fi(x1, . . . , xm) dx1 · · · dxm

in the sense of multivariable calculus. Finally, we define∫
M
η ..=

ℓ∑
i=1

Ii.

We need to show that the latter is independent of the choices made.

Suppose

C′ = {φ′
j : U

′
j −→ V ′

j ⊂ Hm}1≤j≤k

is another such collection of charts, and let {ϱ′j : U ′
j −→ [0, 1]}kj=0 be a

partition of unity subordinate to {U ′
j}kj=0, where U

′
0 = U0. Then the double-

indexed finite collections

C1 = {φij = φi|Ui∩U ′
j
: Ui ∩ U ′

j −→ Hm}1≤i≤ℓ, 1≤j≤k

and

C2 = {φ′
ij = φ′

j |Ui∩U ′
j
: Ui ∩ U ′

j −→ Hm}1≤i≤ℓ, 1≤j≤k

both cover K and refine C and C′, respectively. Furthermore,{
ϱij = ϱi · ϱ′j : Ui ∩ U ′

j −→ [0, 1]
}
1≤i≤ℓ, 1≤j≤k

∪ {ϱ00 : U0 −→ [0, 1]},

where

ϱ00 = ϱ0 + ϱ′0 − ϱ0ϱ
′
0,
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is a partition of unity subordinate to the cover

{Ui ∩ U ′
j}1≤i≤ℓ, 1≤j≤k ∪ {U0}.

For 1 ≤ i ≤ ℓ, 1 ≤ j ≤ k, let Iij and I ′ij denote the integrals of ηij = ϱijη

with respect to the chart maps φij and φ′
ij , respectively.

We claim that

(20.1)
ℓ∑

i=1

Ii =
∑

1≤i≤ℓ, 1≤j≤k

Iij =
∑

1≤i≤ℓ, 1≤j≤k

I ′ij =
k∑

j=1

I ′j ,

where I ′j denotes the integral of η′j = ϱ′jη with respect to the chart map φ′
j .

The first and last equalities follow from the additivity of integration over
Hm, which gives

Ii =
∑

1≤j≤k

Iij , I ′j =
∑

1≤i≤ℓ

I ′ij .

It remains to show that Iij = I ′ij for all 1 ≤ i ≤ ℓ, 1 ≤ j ≤ k. Both Iij and

I ′ij are the integrals of the same m-form ηij with respect to two (potentially

different) chart maps φij and φ′
ij . Suppose

ηij = f(x) dx1 ∧ · · · ∧ dxm

in coordinates via φij and

ηij = g(x) dx1 ∧ · · · ∧ dxm

in coordinates via φ′
ij . If ψ(x) = φ′

ij ◦ φ
−1
ij (x) is the transition map, then

f(x) dx1∧· · ·∧dxm = ψ∗(g dx1∧· · ·∧dxm) = det(dψ) g(ψ(x)) dx1∧· · ·∧dxm.

Since both charts are compatible with the orientation, we have det(dψ) > 0.
It follows from the change of variables formula in multivariable calculus
that

I ′ij =

∫
Hm

g(x) dx1 · · · dxm

=

∫
Hm

det(dψ) g(ψ(x)) dx1 · · · dxm

=

∫
Hm

f(x) dx1 · · · dxm = Iij .

□

Exercise 20.3. Find the integral
∫
S2 ω2 where ω2 is the standard volume

(area) form of S2 as expressed in Exercise 17.10.
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Next, we learn about Stokes’ Theorem that expresses a deep relationship
between differentiation and integration, generalizing the Fundamental The-
orem of Calculus (FTC) to higher dimensions and to integration over man-
ifolds. Just as FTC relates the integral of a derivative over an interval to
the values of a function at the boundary points, Stokes’ Theorem relates the
integral of an exact differential form over a manifold to the integral of the
differential form itself over the boundary of that manifold.

Theorem 20.4. (Stokes’ Theorem) Suppose M is a smooth oriented m-
manifold (possibly) with boundary ∂M and η is a compactly supported (m−
1)-form on M . Then ∫

M
dη =

∫
∂M

η,

where the induced orientation on ∂M is chosen such that, for an outward-
pointing vector field n⃗ along ∂M , the vector bundle isomorphism

TM |∂M = R · n⃗⊕ T∂M

is orientation preserving (see solution to Exercise 15.19).

Many classical results in calculus are special cases of the general Stokes’
Theorem above. For instance, in addition to the Fundamental Theorem of
Calculus (FTC), we have the following:

• Green’s Theorem (in the plane):∮
∂R
P dx+Qdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy

This is a special case of Stokes’ Theorem in dimension 2, where
∮

denotes integration over ∂R with respect to the counterclockwise
orientation.

• Curl Theorem:∫
∂S
F⃗ · dr⃗ =

∫∫
S
(∇× F⃗ ) · dS⃗

This is the general theorem applied to a 2-dimensional surface S ⊂
R3 with boundary. Under the dictionary of Theorem 19.2, this
corresponds to Theorem 20.4 applied to a 1-form.

• Divergence Theorem (Gauss’ Theorem):∫∫∫
V
(∇ · F⃗ ) dV =

∫∫
∂V
F⃗ · dS⃗

This corresponds to Stokes’ Theorem on a 3-dimensional domain V
with boundary surface ∂V . Under the dictionary of Theorem 19.2,
this corresponds to Theorem 20.4 applied to a 2-form. More gen-
erally, for any m-manifold M with a volume form ω and boundary
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∂M , and with divergence defined as in (19.3), the Divergence
Theorem reads:∫

M
Divω(X)ω =

∫
∂M

ιXω.

If ω = ωg is the volume form associated to a Riemannian metric, n⃗
is the orthonormal outward unit vector field along ∂M , and ω∂M

is the volume form of ∂M (with respect to the induced metric), we
can re-write the identity above as∫

M
Divω(X)ω =

∫
∂M

X · n⃗ ω∂M ,

where X · n⃗ = g(X, n⃗) measures the flow of X across the boundary
of M .

• Cauchy Integral Formula (Complex Analysis):

f(z0) =
1

2πi

∮
γ

f(z)

z − z0
dz

This follows from Stokes’ Theorem applied to the closed 1-form

ω = f(z)
z−z0

dz on a cylindrical domain in C, using the fact that holo-
morphic functions satisfy dω = 0.

Proof of Stokes’ Theorem. As we observed in the proof of Theorem 20.2,
any integral can be written as a finite (or countable) sum of integrals over
charts. Thus, it suffices to prove the result for a compactly supported dif-
ferential (m−1)-form

η =
m∑
i=1

ai(x) dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

on Hm = R≥0 × Rm−1.

We compute

dη =

m∑
i=1

(−1)i−1∂ai(x)

∂xi
dx1 ∧ · · · ∧ dxm.

For i > 1, integrating first with respect to the i-th variable we get∫
Hm

∂ai(x)

∂xi
dx1∧· · ·∧dxm =

∫
Hm−1

(∫ ∞

−∞

∂ai(x)

∂xi
dxi

)
dx1 · · · d̂xi · · · dxm = 0,

since by the Fundamental Theorem of Calculus,∫ ∞

−∞

∂ai
∂xi

dxi = 0.
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For i = 1, integrating first with respect to x1 and using the Fundamental
Theorem of Calculus gives:∫
Hm

∂a1
∂x1

dx1 ∧ · · · ∧ dxm =

∫
Rm−1

(∫ ∞

0

∂a1(x1, x2, . . . , xm)

∂x1
dx1

)
dx2 · · · dxm

=

∫
Rm−1

−a1(0, x2, . . . , xm) dx2 · · · dxm.

On the other hand, the outward unit normal vector field to Hm is −∂x1 .
Therefore, the coordinates (x2, . . . , xm) on ∂Hm induce the opposite orien-
tation from the one inherited from M . We conclude that

−
∫
Rm−1

a1(0, x2, . . . , xm) dx2 · · · dxm =

∫
∂M

η|∂M .

□

Exercise 20.5. Redo Exercise 20.3 using the presentation of ω2 Exam-
ple 17.9 and Stokes’ Theorem.

Exercise 20.6. Suppose γ : S1 → R2 is a smooth embedding. Compute
the integral

∫
S1 γ

∗θ when

θ = xy2dx+ x2ydy

Exercise 20.7. Show that the 1-form

η =
xdy − ydx

x2 + y2

on R2−{0} is closed but not exact. Calculate the integral
∫
C η on the ellipse

C = {(x, y) ∈ R2 : x2 + 2y2 = 1}.

Exercise 20.8. Let η be the 2-form on R3 − {0} defined by

η =
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

(x2 + y2 + z2)3/2
.

Let Σ ⊂ R3 − {0} be a smooth compact surface that is the boundary ∂U
of a compact 3-manifold-with-boundary U ⊂ R3. Let’s agree to give the
“bounded domain” U the orientation it inherits from R3, and then use this to
induce the corresponding “out-pointing” boundary orientation on Σ = ∂U .
Prove that

1

4π

∫
Σ
η =

{
1 if 0 ∈ U,

0 otherwise.

Exercise 20.9. In Exercise 8.14, we showed that for a > b > 0, the surface

M = {(x, y, z) ∈ R3 | (r − a)2 + z2 = b2}
is a diffeomorphic to a 2-torus. Here, r2 = x2+y2. Find the area of M with
respect to the standard metric on R3.
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Solutions to exercises

Exercise 20.3. We compute
∫
S2 ω2 in two ways.

Remark 20.10. For any proper open subset U ⊊ S2, the restriction ω2|U
does not have compact support, but

∫
U ω2 is still well-defined and can be

computed using any system of local coordinates. We have used differential
forms with compact support primarily to ensure the finiteness of integrals.
Nevertheless, since

∫
S2 ω2 is finite, integrating ω2 over any chart yields a

finite value. Moreover, if the complement of U has measure zero, then∫
S2

ω2 =

∫
U
ω2.

Thus, in many cases, integrating over a single chart suffices to compute the
integral over the entire manifold.

First, we calculate the area of the upper hemisphere, which is half of the
total area. To do this, by Example 17.10, we need to integrate

1

x0
dx1 ∧ dx2

over the upper hemisphere, which is the graph of

φ : B1 → R3, (x1, x2) 7→
(
x0 =

√
1− x21 − x22, x1, x2

)
.

Therefore,

1

2
area of S2 =

∫
Image(φ)

1

x0
dx1 ∧ dx2 =

∫
B1

φ∗
(

1

x0
dx1 ∧ dx2

)
.

Changing to polar coordinates (r, θ) on the disk of radius one B1 ⊂ R2, the
integral becomes∫ 1

r=0

∫ 2π

θ=0

1√
1− r2

r dr dθ = 2π

∫ 1

0

r√
1− r2

dr = −2π
√
1− r2

∣∣∣1
0
= 2π.

Therefore,
∫
S2 ω2 = 4π.

In the second approach, we cover all but one point of S2 using a single chart
– namely, the stereographic projection map

φ+ : U+ → R2

from (2.3). Since U+ is dense in S2, we have∫
S2

ω2 =

∫
R2

(φ−1
+ )∗ω2.
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We compute:

φ−1
+ (x1, x2) =

1

1 + |x|2
(
|x|2 − 1, 2x1, 2x2

)
.

Using polar coordinates (r, θ) on R2 and cylindrical coordinates (z = x0, R, ϑ)
on R3, this becomes

(r, θ) 7→ (z,R, ϑ) =

(
r2 − 1

r2 + 1
,

2r

r2 + 1
, θ

)
.

Therefore,∫
R2

(φ−1
+ )∗ω2 =

∫
R2

(φ−1
+ )∗

(
1

z
R dR ∧ dϑ

)
=

∫
R2

r2 + 1

r2 − 1
· 2r

r2 + 1
d

(
2r

r2 + 1

)
∧ dθ

=

∫ ∞

r=0

∫ 2π

θ=0

−4r

(r2 + 1)2
dr ∧ dθ

= 2π

∫ ∞

0

−4r

(r2 + 1)2
dr = −4π

[
1

r2 + 1

]∞
0

= 4π.

□

Exercise 20.5. In Example 17.9, the form ω2 is the restriction of

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

to S2. By Stokes’ Theorem,∫
B1

d(x dy∧dz+y dz∧dx+z dx∧dy) =
∫
S2

x dy∧dz+y dz∧dx+z dx∧dy,

where B1 is the unit ball in R3 whose boundary is S2. Since

d
(
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

)
= 3 dx ∧ dy ∧ dz,

we obtain

area of S2 = 3

∫
B1

dx ∧ dy ∧ dz = 3× volume of B1 = 3 · 4
3
π = 4π.

Here, the volume of the unit ball can easily be computed using spherical
coordinates in R3. □

Exercise 20.6. By Jordan Curve Theorem [Kur66], the image C ⊂ R2

of γ divides the plane into exactly two connected components: a bounded
interior R and an unbounded exterior, with C as their common boundary.



Solutions to exercises 189

We have

dθ =
∂(xy2)

∂y
dy ∧ dx+

∂(x2y)

∂x
dx ∧ dy = 2xy dy ∧ dx+ 2xy dx ∧ dy = 0

Therefore, by Stokes’ Theorem,∫
S1

γ∗θ =

∫
C
θ =

∫
R
dθ = 0.

Exercise 20.7. We have

dη =
∂
(

x
x2+y2

)
∂x

dx ∧ dy +
∂
(

y
x2+y2

)
∂y

dx ∧ dy

=
y2 − x2

(x2 + y2)2
dx ∧ dy + x2 − y2

(x2 + y2)2
dx ∧ dy = 0.

Writing η in polar coordinates gives a simpler proof of closedness and an
easier calculation of

∫
C η. Since

θ = tan−1
(y
x

)
,

we get

dθ = d
(
tan−1

(y
x

))
=
∂θ

∂x
dx+

∂θ

∂y
dy.

By the chain rule:

∂θ

∂x
=

d

dx
tan−1

(y
x

)
=

1

1 +
( y
x

)2 ·
(
− y

x2

)
=

−y
x2 + y2

,

∂θ

∂y
=

d

dy
tan−1

(y
x

)
=

1

1 +
( y
x

)2 ·
(
1

x

)
=

x

x2 + y2
.

Therefore,

dθ =
−y

x2 + y2
dx+

x

x2 + y2
dy =

x dy − y dx

x2 + y2
= η.

Let S1
ϵ denote the circle of radius ϵ centered at the origin. For ϵ > 0 suffi-

ciently small, S1
ϵ and C bound an annular region R. By Stokes’ Theorem,

and noting that the orientation of S1
ϵ is opposite to that of C (due to outward

normal vectors pointing in opposite directions), we have

0 =

∫
R
dη =

∫
C
η −

∫
S1
ϵ

η.

Therefore, ∫
C
η =

∫
S1
ϵ

η =

∫
S1
ϵ

dθ = 2π,

which simply measures the total change in angle along C.
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Since the integral is nonzero, η is not exact (this can also be seen from the
fact that θ is multivalued). If η were exact, Stokes’ Theorem would have
implied that

∫
C η = 0. □

Exercise 20.8. The 2-form η is defined outside the origin and satisfies
(check for yourself)

dη = 0.

If U does not include the origin, the result follows from Stokes’ theorem.
If U includes the origin, then for ε > 0 sufficiently small, U contains the
closure of the open ball

Bε = {x ∈ R3 : |x| < ε}.

Let V = U \ Bε(0). Then ∂V consists of Σ = ∂U and the 2-sphere S2
ε

of radius ε. By Stokes’ theorem and the orientation convention (as in the
previous exercise), we have ∫

Σ
η =

∫
S2
ε

η.

Restricted to S2
ε , we have

η|S2
ε
=
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

ε3
.

Therefore, ∫
S2
ε

η = ε−3

∫
S2
ε

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.

By Stokes’ theorem again,∫
S2
ε

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy =

∫
Bε(0)

d(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy)

=

∫
Bε(0)

3 dx ∧ dy ∧ dz = 3vol(Bε(0)) = 4πε3.

Putting everything together, we obtain∫
Σ
η = ε−3(4πε3) = 4π.

□

Exercise 20.9. With respect to the cylindrical coordinates (r, ϑ, z) on R3,
we have the identification S1 × S1 →M given by

h : S1 × S1 → R3, (θ, φ) 7→ (a+ b cos(φ), θ, b sin(φ)),

where θ and φ are the angular variables on S1 ⊂ C.
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The manifold M can also be seen as a (regular) level set of the function

f : R3 → R, (r, ϑ, z) 7→ (r − a)2 + z2.

With respect to the Euclidean coordinates (x, y, z) and the standard metric
on R3, the gradient vector field of f is

∇f = 2

{
(r − a)x

r

∂

∂x
+

(r − a)y

r

∂

∂y
+ z

∂

∂z

}
.

To find the area form of M , we need the normal vector field

n =
∇f
|∇f |

along M . We have

|∇f |M = 2
√

(r − a)2 + z2 = 2b.

Therefore,

n =
1

b

{
(r − a)x

r

∂

∂x
+

(r − a)y

r

∂

∂y
+ z

∂

∂z

}
,

and the area form ω of M is

ω = ιn(dx ∧ dy ∧ dz).
It is easier to write everything in cylindrical coordinates. In (r, ϑ, z) coordi-
nates,

dx ∧ dy ∧ dz = r dr ∧ dϑ ∧ dz
and

n =
1

b

{
(r − a)

∂

∂r
+ z

∂

∂z

}
.

Therefore,

ω =
zr

b
dr ∧ dϑ+

r(r − a)

b
dϑ ∧ dz.

We conclude that

area(M) =

∫
M
ω =

∫
S1×S1

h∗ω

=

∫ 2π

θ=0

∫ 2π

φ=0
(a+ b cos(φ))

(
b sin2(φ) + b cos2(φ)

)
dθ ∧ dφ

=

∫ 2π

θ=0

∫ 2π

φ=0
b(a+ b cos(φ)) dθ ∧ dφ

= 2π

∫ 2π

φ=0
b(a+ b cos(φ)) dφ

= (2π)2ab.





Chapter 21

Poincaré Lemma and
Thom isomorphism

Manifolds are constructed by gluing local pieces that resemble open subsets
of Rm. Therefore, to understand the de Rham cohomology groups of ar-
bitrary manifolds, it suffices to first understand the cohomology groups of
these local pieces.

Theorem 21.1 (Poincaré Lemma). For m ≥ 0 we have H0(Rm) = R and
all other cohomology groups vanish.

For instance, the Poincaré Lemma implies that every closed 1-form on Rm

is exact. Starting with

η =
m∑
i=1

ai(x) dxi,

and assuming dη = 0, the following construction defines a smooth function
f : Rm → R such that df = η.

It is easy to verify that

(21.1) dη = 0 ⇔ ∂ai
∂xj

=
∂aj
∂xi

∀ 1 ≤ i, j ≤ m.

For each t ∈ [0, 1], consider the smooth map

(21.2) φt : Rm → Rm, x 7→ tx.

Clearly, φ∗
1η = η and φ∗

0η = 0. Therefore, by the Fundamental Theorem of
Calculus,

η = φ∗
1η − φ∗

0η =

∫ 1

0

∂

∂t
φ∗
t η dt.

193
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By the definition of the pullback, we have

φ∗
t η =

m∑
i=1

ai(tx) d(txi) = t

m∑
i=1

ai(tx) dxi.

Thus,

∂

∂t
φ∗
t η =

m∑
i=1

ai(tx) dxi + t

m∑
i=1

∂ai(tx)

∂t
dxi.

Applying the chain rule and then using (21.1), the second term becomes

t
m∑
i=1

∂ai(tx)

∂t
dxi = t

m∑
i=1

m∑
j=1

∂ai
∂xj

(tx)xj dxi

= t
m∑
i=1

m∑
j=1

∂aj
∂xi

(tx)xj dxi

= t

m∑
j=1

xj

m∑
i=1

∂aj
∂xi

(tx) dxi

=
m∑
j=1

xj daj(tx).

Therefore,

∂

∂t
φ∗
t η =

m∑
i=1

ai(tx) dxi +
m∑
i=1

xi dai(tx) = d

(
m∑
i=1

xi ai(tx)

)
.

Let

ft : Rm → R, ft(x) =
m∑
i=1

xi ai(tx).

Then,

η =

∫ 1

0
dft dt.

Since d is taken with respect to the x-variables and the integral is with
respect to the parameter t, the two operations commute. Hence,

η = d

∫ 1

0
ft dt.

Therefore, η = df , where

f(x) =

∫ 1

0
ft(x) dt.
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Remark 21.2. This proof does not extend to compactly supported 1-forms,
because the support of ft, and hence of f , is the preimage under φt of the
support of η, which grows as t→ 0.

Exercise 21.3. The following is a well-known result that allows us to inte-
grate smooth differential forms over continuous maps into manifolds.

Theorem 21.4 (Approximation of Continuous Maps by Smooth Maps
[Hir76, Theorem 2.7]). Let X be a compact C∞ manifold (with or with-
out boundary), and let Y be a smooth manifold. Then every continuous map
f : X → Y is homotopic to a smooth map, and given any open cover U of
Y , f can be approximated by a smooth map g such that f(x) and g(x) lie in
the same element of U for all x ∈ X.

Keeping this in mind, suppose M is a simply-connected smooth manifold
and η is a closed 1-form on M . Fix a base point p0 ∈ M . For any other
point p ∈ M , let γ : I → M be any smooth path from p0 to p. Here, I is
closed interval in R. Show that

f : M → R, f(p) =

∫
γ
η ..=

∫
I
γ∗η

is well-defined (i.e., it does not depend on the choice of γ). Prove that
df = η.

There are different ways to prove the Poincaré Lemma. Here, we follow an
approach that relies on important and broadly applicable techniques from
homological algebra.

Suppose f : M → M ′ is a smooth map between two manifolds. Since the
exterior derivative d commutes with pullback by f , the map f induces a
linear map

f∗ : Hk(M ′) → Hk(M) ∀ k ≥ 0.

However, the same is not true for compactly supported cohomology groups,
since the pullback of a compactly supported k-form may fail to be compactly
supported. This issue is resolved if we assume that f is proper, meaning that
the preimage of every compact set is compact.

Definition 21.5. Two smooth maps f0, f1 : M →M ′ are called smoothly
homotopic if there exists a smooth map

F : [0, 1]×M →M ′

such that

F |{0}×M = f0 and F |{1}×M = f1.
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Example 21.6. The identity map id: Rm → Rm and the constant map
0: Rm → Rm are smoothly homotopic. One such smooth homotopy is given
by

F : [0, 1]× Rm → Rm, (t, x) 7→ tx,

that we used in (21.2).

Theorem 21.7. If f0, f1 : M →M ′ are smoothly homotopic, then

f∗0 = f∗1 : H
k(M ′) → Hk(M).

Corollary 21.8 (Poincaré Lemma). For m ≥ 0 we have H0(Rm) = R while
all other cohomology groups vanish.

Proof. Apply Theorem 21.9 to f1, f0 : Rm −→ Rm, where f1(x) = x and
f0(x) = 0. □

To prove Theorem 21.9, we establish a stronger result at the level of differ-
ential forms. More generally, consider two cochain complexes:

(A•, d) ..= · · · −→ Ak−1
d−→ Ak

d−→ Ak+1 −→ · · ·

and

(B•, d) ..= · · · −→ Bk−1
d−→ Bk

d−→ Bk+1 −→ · · · .

A map of cochain complexes f : (A•, d) → (B•, d) is a sequence of maps
fk : Ak → Bk such that the following diagram commutes for all k:

· · · // Ak−1
d //

fk−1

��

Ak
d //

fk
��

Ak+1
d //

fk+1

��

· · ·

· · · // Bk−1
d // Bk

d // Bk+1
d // · · ·

A map of cochain complexes induces maps on cohomology groups. Two such
maps

f, g : (A•, d) → (B•, d)

are called chain homotopic if there exists a sequence I = {Ik} of degree
decreasing maps Ik : Ak → Bk−1 such that

fk − gk = d ◦ Ik + Ik+1 ◦ d.

This is typically illustrated by the following (non-commutative) diagram:

· · · // Ak−1
d //

fk−1−gk−1

��

Ak
d //

fk−gk
��

Ik

ww

Ak+1
d //

fk+1−gk+1

��

Ik+1

ww

· · ·

· · · // Bk−1
d // Bk

d // Bk+1
d // · · ·
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It is a general fact that chain homotopic maps induce the same maps on
cohomology; c.f. [Wei94, Lemma 1.3.2]. The proof is relatively easy and
involves some diagram chasing.

In the setting of smooth maps between manifolds, the following theorem
shows that if f0, f1 : M → M ′ are smoothly homotopic, then the induced
pullback maps on differential forms are chain homotopic. Consequently,
Theorem 21.9 follows.

Theorem 21.9.

(I) For k ≥ 1, there exists a linear map

hk : Ω
k([0, 1]×M) → Ωk−1(M)

such that

j∗1 − j∗0 = d ◦ hk + hk+1 ◦ d,
where j0, j1 : M → [0, 1]×M are the inclusion maps of the bound-
ary:

j0(x) = (0, x) and j1(x) = (1, x).

(II) If f0, f1 : M →M ′ are smoothly homotopic, then the pullback maps

f∗0 , f
∗
1 : (Ω

•(M ′), d) → (Ω•(M), d)

are chain homotopic. Therefore, they induce the same map between
cohomology groups of M ′ and M .

Proof. For k ≥ 1, every differential k-form on [0, 1] ×M can be uniquely
decomposed as

dt ∧ α+ β,

where ι∂tβ = 0, and in any product chart [0, 1]× U , with local coordinates
(x1, . . . , xm) on U , the forms α and β only involve the differentials dxi
(although their coefficients may depend on both x and t).

Define

hk(dt ∧ α+ β) =

∫ 1

0
αdt ∈ Ωk−1(M).

In other words, the operator hk integrates the coefficient functions of α with
respect to t, yielding functions that only depend on x.

To verify that this operator has the desired properties, it suffices to work in
a local chart on M .

In a chart with coordinates (x1, . . . , xm), the form α is a sum of terms of
the form

a(t, x) dxi1 ∧ · · · ∧ dxik−1
,
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and β is a sum of terms of the form

b(t, x) dxj1 ∧ · · · ∧ dxjk .

Taking one of these terms at a time for simplicity of notation, we compute:

(1)

(j∗1 − j∗0)(dt ∧ α+ β) = (b(1, x)− b(0, x)) dxj1 ∧ · · · ∧ dxjk
(2)

(d ◦ hk)(dt ∧ α+ β) = dx

((∫ 1

0
a(t, x) dt

)
dxi1 ∧ · · · ∧ dxik−1

)
=

(∫ 1

0
dxa(t, x) dt

)
dxi1 ∧ · · · ∧ dxik−1

=
∑
i0

(∫ 1

0

∂a(t, x)

∂xi0
dt

)
dxi0 ∧ · · · ∧ dxik−1

(3)

(hk+1 ◦ d)(dt ∧ α+ β) = hk+1

(
−dt ∧ dxα+ dt ∧ ∂β

∂t
+ dxβ

)
= hk+1

(
− dt ∧

∑
i0

∂a(t, x)

∂xi0
dxi0 ∧ · · · ∧ dxik−1

+ dt ∧ ∂b(t, x)

∂t
dxj1 ∧ · · · ∧ dxjk

)
= −

∑
i0

(∫ 1

0

∂a(t, x)

∂xi0
dt

)
dxi0 ∧ · · · ∧ dxik−1

+

(∫ 1

0

∂b(t, x)

∂t
dt

)
dxj1 ∧ · · · ∧ dxjk

= −
∑
i0

(∫ 1

0

∂a(t, x)

∂xi0
dt

)
dxi0 ∧ · · · ∧ dxik−1

+ (b(1, x)− b(0, x)) dxj1 ∧ · · · ∧ dxjk
It is clear from the calculations above that

(j∗1 − j∗0)(dt ∧ α+ β) = (d ◦ hk + hk+1 ◦ d) (dt ∧ α+ β).

This finishes the proof of part I.

For part II, we have f0 = F ◦ j0 and f1 = F ◦ j1. Therefore,

f∗0 = j∗0 ◦ F ∗ and f∗1 = j∗1 ◦ F ∗.
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By part I and since pullback commutes with d, we have

f∗1 − f∗0 = (j∗1 − j∗0) ◦ F ∗ = (d ◦ hk + hk+1 ◦ d) ◦ F ∗ = d ◦ Ik + Ik+1 ◦ d,

where

Ik = hk ◦ F ∗ : Ωk(M) → Ωk−1(M).

□

For compactly-supported cohomology, we obtain a result that is formally
opposite to Theorem 21.1. This is no coincidence. As we explain later, on
any smooth oriented m-manifold M without boundary, the bilinear pairing

Ωk(M,R)× Ωm−k
c (M,R) −→ R

defined by integration of the wedge product of forms,

(α, β) 7→
∫
M
α ∧ β,

induces a natural isomorphism betweenHm−k
c (M,R) and the dual ofHk(M,R).

In particular, Hk(M,R) and Hm−k
c (M,R) are finite-dimensional real vector

spaces of the same dimension (This is one version of Poincaré duality).

Theorem 21.10 (Thom Isomorphism). For every smooth manifold M , we
have an isomorphism

Hk+1
c (M × R,R) ∼= Hk

c (M,R).

Consequently, for every m ≥ 0, we have Hm
c (Rm,R) ∼= R, and all other

compactly-supported cohomology groups of Rm vanish.

Proof. For any smooth manifold M , we construct a linear map

(21.3) I : Ωk+1
c (R×M) −→ Ωk

c (M)

with the following properties:

(1) It sends closed forms to closed forms.

(2) It sends exact forms to exact forms.

(3) It is surjective; in fact, there exists a map J : Ωk
c (M) → Ωk+1

c (R ×M)
such that I ◦ J = id.

(4) If η ∈ Ωk+1
c (R×M) is closed and I(η) is exact, then η is exact.

It is easy to see that such an operator I induces an isomorphism

Hk+1
c (R×M,R) −→ Hk

c (M,R).

Just as in the proof of the Poincaré Lemma, we decompose

η = dt ∧ α+ β,
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and define

I(η) =

∫
R
α dt.

The support of I(η) is the projection to M of the compact support of η.

Since

dη = dt ∧
(
−dxα+

∂β

∂t

)
+ dxβ,

we conclude that η is closed if and only if

dxα =
∂β

∂t
and dxβ = 0,

where dx denotes the exterior derivative with respect to the M -coordinates
in a product chart.

To check (1): If η is closed, then

d(I(η)) = dx

∫
R
α dt =

∫
R
dxα dt =

∫
R

∂β

∂t
dt = β(∞, x)− β(−∞, x) = 0.

To check (2): If

η = dγ = dt ∧
(
−dxa+

∂b

∂t

)
+ dxb

for some γ = dt ∧ a+ b ∈ Ωk
c (R×M), then

I(η) =

∫
R
α dt =

∫
R

(
−dxa+

∂b

∂t

)
dt = −dx

∫
R
a dt,

which is clearly exact.

To construct a right inverse J , choose any compactly supported function
h(t) on R with total integral

∫
R h(t) dt = 1, and define

J : Ωk
c (M) → Ωk+1

c (R×M), α 7→ dt ∧ (h(t)α).

It is easy to check that I ◦ J = id.

Finally, to verify (4), suppose η = dt ∧ α+ β ∈ Ωk+1
c (R×M) is closed and

I(η) is exact. Then J(I(η)) is also exact, and I(η − J(I(η))) = 0. So by
replacing η with η − J(I(η)), we may assume I(η) = 0. In this case, define

b(t, x) =

∫ t

−∞
α(s, x) ds.

It is easy to check that b ∈ Ωk
c (R×M) satisfies dγ = η.

This completes the proof of the first statement in Theorem 21.10. The
second statement then follows by induction on m, using the first statement.
The base case m = 1 was addressed in Exercise 18.9. □
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Both the Poincaré Lemma and Thom Isomorphism hold in more general
settings. Suppose π : E →M is a smooth vector bundle of rank r. Then,

(21.4) Hk(E,R) ∼= Hk(M,R).
Furthermore, if E is oriented, integration along the fibers of E defines an
isomorphism

(21.5) Hk
c (E,R) −→ Hk−r

c (M,R).
These generalizations are particularly useful for relating singular homology
(which we do not study in this book) and de Rham cohomology.

Exercise 21.11. Use Theorem 21.9 to prove (21.4). Then, by considering
local trivializations of E and verifying that the isomorphism constructed
in the proof of Theorem 21.10 is compatible with the transition maps,
prove (21.5).

Exercise 21.12. Form ≥ 1, supposeM is a compact, connected, orientable
m-dimensional submanifold of Rm+1. In Exercise 15.4, we showed that the
normal bundle of M is trivial. Use this, together with the fact (which
we do not prove in this book) that a neighborhood of any submanifold is
diffeomorphic to a neighborhood of the zero section in its normal bundle, to
prove that Rm+1 \M has exactly two connected components.
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Solutions to exercises

Exercise 21.3. First, we show that
∫
γ η does not depend on the choice of

path γ. Suppose γ1 and γ2 are two smooth paths from the fixed base point
p0 to a point p ∈ M . Then the concatenation of γ1 with the reverse of γ2
(e.g., γ2(1− t) when t ∈ I = [0, 1]) defines a continuous loop

γ : S1 →M.

Since M is simply connected, the map γ extends to a continuous map

γ̃ : D2 →M,

where D2 is the 2-dimensional disk bounding S1. By Theorem 21.4, for any
ε > 0, the map γ̃ can be approximated by smooth maps γ̃ε : D

2 → M that
are ε-close to γ̃ in the uniform C0-norm. Since η is closed, and by Stokes’
Theorem,

0 =

∫
D2

γ̃∗εdη =

∫
S1

γ∗εη,

where γε is the restriction of γ̃ε to S1. Letting ε → 0 and using continuity
of integration, we conclude that

0 =

∫
S1

γ∗η =

∫
γ1

η −
∫
γ2

η.

To show that df = η at a point p ∈ M , note that the derivative is a local
property, so we may work in a coordinate chart around p. Let (x1, . . . , xm)
be local coordinates on a neighborhood U of p, identifying p with the origin
0 ∈ U ⊂ Rm. Then

∂f

∂xi
(0) = lim

h→0

f(hei)− f(0)

h
,

where ei is the standard unit vector in the i-th direction. Fix a path γ0 from
p0 to p. Concatenating it with the straight-line path

γh : [0, 1] → U, t 7→ thei,

gives a path from p0 to the point corresponding to hei. Therefore,

f(hei)− f(0)

h
=

1

h

∫ 1

0
γ∗hη.

Suppose

η =
m∑
j=1

aj(x) dxj .

Then

γ∗hη = ai(t h ei)h dt,
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and so
1

h
γ∗hη = ai(t h ei) dt.

Therefore,
f(hei)− f(0)

h
=

∫ 1

0
ai(t h ei) dt,

and taking the limit as h→ 0 gives

lim
h→0

f(hei)− f(0)

h
=

∫ 1

0
ai(0) dt = ai(0).

We conclude that

df |0 =
∑
i

∂f

∂xi
(0) dxi = η|0.

□
Exercise 21.11. The map

F : [0, 1]× E −→ E, (t, v) −→ tv

is a smooth homotopy interpolating between the identity map on E and the
projection map π : E −→ M . Note that π is viewed as a map from E to
itself, with image equal to M . From this perspective, the map

π∗ : Hk(E,R) −→ Hk(E,R)

acts by first restricting a cohomology class to M and then pulling it back to
E. By Theorem 21.9, π∗ is the identity map on Hk(E,R). Therefore, every
cohomology class on E is equal to the pullback of its restriction to M , and
we conclude that

Hk(E,R) ∼= Hk(M,R).

Consider a collection of local trivializations

{Φi : E|Ui −→ Ui × Rr}

over a countable open cover {Ui} of M , compatible with the orientation on
E.

For each i, let

Ii : Ω
k+r
c (Ui × Rr) −→ Ωk

c (Ui)

be the map obtained by repeatedly applying (21.3) r times, eliminating one
copy of R at a time. More precisely, any η ∈ Ωk+r

c (Ui × Rr) can be written
as

η = dt1 ∧ · · · ∧ dtr ∧ α+ β,

where (t1, . . . , tr) are coordinates on Rr, and β consists of terms that do not
include dt1 ∧ · · · ∧ dtr. Then,

Ii(η) =

∫
Rr

α dt1 · · · dtr.
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The support of Ii(η) is the projection to Ui of the compact support of η.

Using a partition of unity subordinate to the open cover {Ui}, every η ∈
Ωk+r(E) can be decomposed as a countable sum

∑
i ηi, where each ηi is sup-

ported in E|Ui . Under the identifications of Ωk+r
c (Ui × Rr) and Ωk+r

c (E|Ui)
given by Φi, we define

I(η) =
∑
i

Ii(ηi).

To prove that I is well-defined – i.e., independent of the choice of local
trivializations and partition of unity – we must show that different local
trivializations

Φ1 : E|U −→ U × Rr and Φ2 : E|U −→ U × Rr

result in the same maps

I1, I2 : Ω
k+r
c (U × Rr) −→ Ωk

c (U).

In other words, the change-of-trivialization map (which is a diffeomorphism)

Ψ: U × Rr −→ U × Rr,

(x, t = (t1, . . . , tr)) 7→ (x, s = (s1, . . . , sr)) = (x,Φ17→2(x)t)

satisfies

I2(η) = I1(Ψ
∗η) ∀ η ∈ Ωk+r

c (U × Rr).

If

η = ds1 ∧ · · · ∧ dsr ∧ α(x, s) + β(x, s),

then

Ψ∗η = det(Φ1 7→2(x)) dt1 ∧ · · · ∧ dtr ∧ α(x,Φ17→2(x)t) + β′(x, t),

where β′(x, t) collects all terms that do not include dt1 ∧ · · · ∧ dtr, and
α(x,Φ17→2(x)t) denotes the k-form whose coefficients are the coefficients of
α written as functions of (x, t) under the change of variables.

Therefore,

I2(η) =

∫
Rr

α2(x, s) ds1 · · · dsr

and

I1(Ψ
∗η) =

∫
Rr

det(Φ17→2(x))α2(x,Φ1 7→2(x)t) dt1 · · · dtr.

Since the local trivializations are compatible with the orientation we have
det(Φ17→2(x)) > 0. For each fixed x, the map t 7→ Φ17→2(x)t is a linear
transformation with Jacobian determinant det(Φ17→2(x)). It follows from
the change of variables formula in multivariable calculus that the two
integrals are equal. □
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Exercise 21.12. As explained in the question, a neighborhood U of M
in Rm+1 can be identified (via a diffeomorphism) with V = M × (−1, 1),
identifyingM withM×{0}. Clearly, V \M has two connected components,
distinguished by the sign of the variable in R∗.

First, we show that Rm+1 \M has at least two connected components. Fix
p ∈ M , choose 0 < ε < 1, and let p± = (p,±ε) ∈ V . We denote the
corresponding points in U by the same letters. Suppose p± belong to the
same connected component of Rm+1 \M . Fix a smooth path γ connecting
them. Attaching to γ the straight path from p− to p+ in V , which intersects
M transversely at (p, 0), we obtain a loop

γ̃ : S1 −→ Rm+1

that intersects M transversely once at p ∈M .

Suppose h(t) is a smooth function compactly supported in (−ε, ε) with non-
zero integral ∫ ε

−ε
h(t) dt = c ̸= 0.

Under the identification of U and V , the compactly supported closed 1-form
η = h(t) dt on V defines a compactly supported closed 1-form η on Rm+1.
It is clear that ∫

γ̃
η = ±c.

On the other hand, by the Thom isomorphism or Poincaré lemma, η is exact;
i.e., η = df for some smooth function f . Therefore, by Stokes’ theorem,∫

γ̃
η =

∫
S1

d(f ◦ γ̃) = 0.

This is a contradiction. We conclude that the images U± of M × (0, 1) and
M×(−1, 0) in U belong to two different connected components of Rm+1\M .

Since Rm+1 is connected, every point in Rm+1 \M can be connected to a
point in U± without intersectingM . We conclude that Rm+1\M has exactly
two connected components. Since M is compact, one of these components
is unbounded, and the other must be bounded by M . □





Chapter 22

Mayer-Vietoris
sequence

As we have emphasized repeatedly, manifolds are constructed by gluing to-
gether local pieces that resemble open subsets of Rm. The Poincaré Lemma
and the Thom isomorphism illustrate that the cohomology of these local
pieces is relatively simple. To deduce information about the de Rham co-
homology of a general manifold from that of its local pieces, we need an
inductive tool. The Mayer-Vietoris sequence provides precisely such a mech-
anism, arising naturally from basic principles of homological algebra.

Suppose M = U1 ∪U2 is a decomposition of the smooth m-manifold M into
two open subsets. For every k ≥ 0 and i = 1, 2, let

Ri : Ω
k(M) −→ Ωk(Ui) and ri : Ω

k(Ui) −→ Ωk(U1 ∩ U2)

denote the restriction maps. Putting them together appropriately gives us
a sequence

0 −→ Ωk(M)
R=R1⊕R2−−−−−−→ Ωk(U1)⊕ Ωk(U2)

r=r1−r2−−−−−→ Ωk(U1 ∩ U2) −→ 0.

It is easy to verify that this is a short exact sequence; that is, R is injective,
r is surjective, and ker(r) = Im(R). Surjectivity of r can be proved using a
partition of unity subordinate to the covering.

207
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Running over all k ≥ 0, the maps R and r define a short exact sequence of
cochain complexes, i.e., a short exact sequence (in vertical direction)

· · · // Ωk−1(M)
d //

R
��

Ωk(M)
d //

R
��

Ωk+1(M)
d //

R
��

· · ·

· · · // Ωk−1(U1 ⊔ U2)
d //

r
��

Ωk(U1 ⊔ U2)
d //

r
��

Ωk+1(U1 ⊔ U2)
d //

r
��

· · ·

· · · // Ωk−1(U1 ∩ U2)
d // Ωk(U1 ∩ U2)

d // Ωk+1(U1 ∩ U2)
d // · · ·

between the de Rham cochain complexes of M , U1⊔U2, and U1∩U2. It is a
basic theorem in homological algebra that a short exact sequence of cochain
complexes results in a long exact sequence of cohomology groups; see [Wei94,
Theorem 1.3.1]. In our case, this short exact sequence yields the long exact
sequence of cohomology groups:

0 // H0(M,R) R // H0(U1,R)⊕H0(U2,R)
r // H0(U1 ∩ U2,R)

δ

// H1(M,R) // H1(U1,R)⊕H1(U2,R) // H1(U1 ∩ U2,R)
δ

// · · ·
δ

// Hm(M,R) // Hm(U1,R)⊕Hm(U2,R) // Hm(U1 ∩ U2,R) → 0

The maps in each row are induced by the maps R and r. We now describe
explicitly the so-called connecting homomorphisms

δ : Hk(U1 ∩ U2,R) −→ Hk+1(M,R)

in our setting. This long exact sequence is known as the Mayer-Vietoris
sequence.

Any cohomology class [η] ∈ Hk(U1∩U2,R) is represented by a closed k-form

η ∈ Ωk(U1 ∩ U2,R).

Suppose {ϱi : Ui → [0, 1]} is a partition of unity subordinate to the open
cover {U1, U2}. Then the k-forms

η1 = ϱ2η and η2 = −ϱ1η
on U1 ∩ U2 can be trivially (i.e., by zero) extended to well-defined k-forms
on U1 and U2 such that r(η1, η2) = η. Let η̃i = dηi. Since dϱ1 + dϱ2 = 0, we



22. Mayer-Vietoris sequence 209

have

η̃1|U1∩U2 = η̃2|U1∩U2 .

Therefore, η̃1 and η̃2 define a (k + 1)-form η̃ on M . Moreover, this form is
closed since each η̃i is exact. Hence, it defines a cohomology class [η̃], which
we define to be δ([η]). It takes a lengthy but straightforward calculation to
check that this result is independent of the choices involved. More precisely,
to show that δ is well-defined, one must verify the following:

(1) If η is replaced by a cohomologous form (i.e., changed by an exact form),
then η̃ also changes by an exact form.

(2) If the partition of unity is changed, the resulting form η̃ again changes
by an exact form.

The reader is encouraged to verify these properties as an instructive exercise.

Example 22.1. The domain of the 2-chart atlas (2.3) gives a decomposition
S2 = U1 ∪ U2, where Ui

∼= R2 and U1 ∩ U2 = R2 \ {0} ∼= S1 × R. By the
Poincaré Lemma (see Exercise 21.11),

Hk(U1 ∩ U2,R) ∼= Hk(S1,R).

Therefore, the Mayer–Vietoris sequence takes the form

0 // R R // R⊕ R r // R
δ

// H1(S2,R) // 0⊕ 0 // R
δ

// H2(S2,R) // 0⊕ 0 // 0

It is straightforward to verify that the first row is exact; that is, the map

H0(U1,R)⊕H0(U2,R) → H0(U1 ∩ U2,R)

is surjective. Therefore, H1(S2,R) = 0 and H2(S2,R) ∼= H1(S1,R) ∼= R is
one-dimensional.

The second cohomology class inH2(S2,R) corresponding to [dθ] ∈ H1(S1,R)
under the connecting homomorphism (which is an isomorphism in this case)
can be explicitly described as follows.

Starting from η = dθ ∈ Ω1(R2 \ {0}), we construct η1 and η2 on U1 and
U2 by multiplying dθ with suitable functions. Writing down explicit bump
functions with compact support is difficult because such functions are not
analytic. However, all we really need are functions f1, f2 such that η1 = f2η,
η2 = −f1η, and f1 + f2 = 1, with fi vanishing at the origin of Ui.
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The chart maps in (2.9) equip Ui with polar coordinates (ri, θi) such that
r1r2 = 1 and θ1 + θ2 = 0. In complex coordinates, this corresponds to
z1 = r1e

iθ1 and z2 = r2e
iθ2 , related by z2 =

1
z1
.

Let us choose the angular coordinate θ on U1 ∩ U2 to be θ1. The functions

f2(r1) =
r21

1 + r21
and f1(r2) =

r22
1 + r22

satisfy the required properties. We obtain

η1 =
r21

1 + r21
dθ1 and η2 =

r22
1 + r22

dθ2.

The resulting 2-forms

η̃1 = dη1 =
2r1

(1 + r21)
2
dr1 ∧ dθ1 and η̃2 = dη2 =

2r2
(1 + r22)

2
dr2 ∧ dθ2

are compatible on the overlap and glue together to define a global 2-form η̃
on S2. This form represents a generator [η̃] of H2(S2,R).
One can check that η̃ is, in fact, the standard area form on S2.

The restriction of a compactly supported differential form to an open subset
is not necessarily compactly supported. The inclusion map, however, is well-
defined. Therefore, corresponding to an open decomposition M = U1 ∪ U2

we get short exact sequences of compactly supported differential forms

0 −→ Ωk
c (U1 ∩ U2)

ι=ι1⊕ι2−−−−−→ Ωk
c (U1)⊕ Ωk

c (U2)
j=j1−j2−−−−−→ Ωk

c (M) −→ 0.

in reverse direction. Here, for i = 1, 2,

ιi : Ω
k
c (U1 ∩ U2) −→ Ωk

c (Ui) and ji : Ω
k
c (Ui) −→ Ωk

c (M)

are the inclusion maps.

Running over all k ≥ 0, the maps ι and j define a short exact sequence of
cochain complexes

· · · // Ωk−1
c (U1 ∩ U2)

d //

ι
��

Ωk
c (U1 ∩ U2)

d //

ι
��

Ωk+1
c (U1 ∩ U2)

d //

ι
��

· · ·

· · · // Ωk−1
c (U1 ⊔ U2)

d //

j
��

Ωk
c (U1 ⊔ U2)

d //

j
��

Ωk+1
c (U1 ⊔ U2)

d //

j
��

· · ·

· · · // Ωk−1
c (M)

d // Ωk
c (M)

d // Ωk+1
c (M)

d // · · ·
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Consequently, we obtain the long exact sequence of compactly supported
cohomology groups:

0 // H0(U1 ∩ U2,R)
ι // H0

c (U1,R)⊕H0
c (U2,R)

j // H0
c (M,R)

δ

// H1
c (U1 ∩ U2,R) // H1

c (U1,R)⊕H1
c (U2,R) // H1

c (M,R)
δ

// · · ·
δ

// Hm
c (U1 ∩ U2,R) // Hm

c (U1,R)⊕Hm
c (U2,R) // Hm

c (M,R) → 0

Exercise 22.2. Since S2 is closed, Hk(S2,R) = Hk
c (S

2,R). Altering Exam-
ple 22.1, use the compactly supported version of the Mayer-Vietoris sequence
to calculate the cohomology groups of S2.
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Solutions to exercises

Exercise 22.2. By the Thom isomorphism,

Hk
c (Ui) =

{
0 if k = 0, 1,

R if k = 2

and

Hk
c (U1 ∩ U2) ∼= Hk−1

c (S1) =

{
0 if k = 0,

R if k = 1, 2.

Therefore, the compactly supported Mayer–Vietoris sequence for S2 = R2∪
R2 reads

0 // 0
ι // 0⊕ 0

j // H0(S2,R)
δ

// R // 0⊕ 0 // H1(S2,R)
δ

// R // R⊕ R // H2(S2,R) → 0

Thus, H0(S2,R) ∼= R, and the remaining part of the sequence is

0 −→ H1(S2,R) δ−→ H2
c (U1∩U2,R) −→ H2

c (U1,R)⊕H2
c (U2,R) −→ H2(S2,R) −→ 0.

The map
H2

c (U1 ∩ U2,R) −→ H2
c (U1,R)

is injective; therefore, H1(S2,R) = 0. To see this, it can be observed from
the proof of the Thom isomorphism that a generator of H2

c (U1 ∩U2,R) = R
is of the form

h(r) dr ∧ dθ,
where (r, θ) are polar coordinates on U1 ∩ U2 = R2 \ {0}, and h(r) is a
function supported near the unit circle r = 1, satisfying

∫∞
0 h(r) dr ̸= 0. By

Stokes’ theorem, since ∫
R2

h(r) dr ∧ dθ ̸= 0,

this form defines a nontrivial class in H2
c (R2,R) as well.

Having shown that H1(S2,R) = 0, we conclude that the remainder of the
sequence is a short exact sequence

0 −→ H2
c (U1 ∩ U2,R) −→ H2

c (U1,R)⊕H2
c (U2,R) −→ H2(S2,R) −→ 0,

which shows that H2(S2,R) ∼= R. We will study top-degree cohomology in
more detail in the next section. □
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Cohomology in top
degree

Cohomology in degree zero of any connected manifoldM is simplyH0(M,R) =
R. In this lecture, we will see that the top-degree cohomology of manifolds
is also simple and often identifiable with R via integration.

Theorem 23.1. Suppose M is a smooth oriented connected m-manifold
without boundary. Then Hm

c (M,R) ∼= R. Moreover, integration of com-
pactly supported m-forms descends to the desired isomorphism, and for any
open subset U ⊂M , every class in Hm

c (M,R) has a representative supported
in U .

Proof. Suppose M is oriented. By Stokes’ Theorem, the integration map∫
M
: Ωm

c (M) −→ R

vanishes on exact forms (note that every m-form is automatically closed).
Hence,

∫
M descends to a well-defined linear map∫

M
: Hm

c (M,R) −→ R.

This map is surjective because any positive function times a volume form
yields a non-zero integral. We aim to show that it is an isomorphism.

Let {Uα} be a countable open cover of M by sets homeomorphic to open
balls in Rm. Given ω ∈ Ωm

c (M), a partition of unity lets us write ω =
∑

α ωα,

213
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where each ωα is compactly supported in Uα. Define

cα ..=

∫
M
ωα.

Now fix any open subset U ⊂M homeomorphic to an open ball in Rm, and
choose ω̃ ∈ Ωm

c (U) such that
∫
M ω̃ = 1. This can be done by taking an

appropriate multiple of a volume form. We claim that

[ωα] = cα[ω̃] ∈ Hm
c (M,R).

It follows that

[ω] =
(∑

α

cα

)
[ω̃],

i.e., Hm
c (M,R) is generated by a single element.

To verify this claim, fix a finite chain of overlapping open setsW0,W1, . . . ,Wn,
each homeomorphic to an open ball in Rm, such thatW0 = U andWn = Uα.
For each 1 ≤ i ≤ n, choose an open setW ′

i ⊂Wi∩Wi−1, also homeomorphic
to an open ball in Rm, and pick ω̃i ∈ Ωm

c (W ′
i ) such that

∫
M ω̃i = 1. By the

Thom isomorphism,

Hm
c (Wi) ∼= Hm

c (W ′
i )

∼= R,

generated by any m-form with non-zero integral. Moving inductively from
Wi−1 to W ′

i , and from W ′
i to Wi, we conclude:

• Initially, ω̃ − ω̃1 = df0 for some compactly supported function f0
on W0 = U ;

• Then, for each i = 1, . . . , n − 1, we have ω̃i+1 − ω̃i = dfi for some
compactly supported function fi on Wi;

• Finally, cω̃n − ωα = dfn for some compactly supported function fn
on Wn = Uα.

Adding these relations yields

cω̃ − ωα = df,

for some compactly supported function f = fn + c
∑n−1

i=0 fi on M . □

Remark 23.2. For any connected smooth manifold M , there exists a two-

sheeted covering space M̃ → M whose total space M̃ is oriented, and such
that the deck transformation acts by reversing orientation. This oriented
double cover exists whether or not M is orientable, and it is connected if
and only if M is non-orientable.

If M is a smooth connected m-manifold without boundary which is not ori-

entable, the connected orientable two-sheeted cover M̃ can be used to show
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that Hm
c (M,R) = 0, because the Z2-action on Hm

c (M̃,R) is by multiplica-

tion by −1. Therefore, there are no Z2-invariant elements in Ωm
c (M̃) with

nonzero integral.

Exercise 23.3. Suppose f : M → M ′ is a smooth map between two m-
dimensional closed (i.e., compact and without boundary) oriented manifolds
and M ′ is connected. The degree of f is the number

deg(f) =

∫
M f∗ω∫
M ′ ω

where ω is any m-form on M ′ such that 0 ̸= [ω] ∈ Hm(M ′) such as the
volume form of M ′.

• Prove that deg(f) is independent of the choice of ω.

• Sard’s Theorem [Hir76, Ch. 3] shows that a generic point in M ′

is a regular value of f . Use this to show that deg(f) is an integer
that counts the number of preimages of a regular value, with signs.

Exercise 23.4. Show that every degree d polynomial p(z) = zd+ad−1z
d−1+

. . .+ a0 defines a holomorphic map p : CP1 ∼= S2 → CP1 of degree d.

Exercise 23.5. Consider two disjoint embeddings of the circle S1 into R3:

γ1, γ2 : S
1 ↪→ R3,

with image curves denoted by C1 and C2. Define

f : S1 × S1 → S2, (p1, p2) 7→
γ1(p1)− γ2(p2)

|γ1(p1)− γ2(p2)|
.

The linking number ℓ(C1, C2) of C1 and C2 is defined to be the degree of
the map f , where each S1 is oriented counterclockwise, and S1×S1 is given
the product orientation. Prove that:

• ℓ(C1, C2) is symmetric in its inputs.

• If C1 bounds an embedded oriented surface Σ transverse to C2,
then ℓ(C1, C2) equals the signed count of the intersection points of
D and C2.

Theorem 23.1 can be used to prove an interesting duality between ordi-
nary and compactly supported cohomology groups, extending the duality
observed by comparing the Poincaré Lemma and the Thom isomorphism on
Rm.

Lemma 23.6. On any smooth oriented m-manifold M without boundary,
the bilinear map

Ωk(M,R)× Ωm−k
c (M,R) −→ R
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defined by integration of the wedge product of forms,

(α, β) 7→ ⟨α, β⟩ ..=

∫
M
α ∧ β,

descends to a bilinear map

(23.1) ⟨−,−⟩ : Hk(M)×Hm−k
c (M) −→ R.

Proof. This is a consequence of Stokes’s Theorem and the assumption that
∂M = ∅. □

Definition 23.7. An open cover {Uα} of anm-manifoldM (without bound-
ary) is called a good cover if every nonempty finite intersection Uα0 ∩ · · ·∩
Uαp is diffeomorphic to Rm. A manifold that admits a finite good cover is
said to be of finite type.

Every smooth manifold admits a good cover, for example by sufficiently
small balls with respect to a Riemannian metric. Every closed manifold is of
finite type. Being of finite type implies, for instance, that the (co)homology
groups of M are finite-dimensional. One typically restricts to manifolds of
finite type to avoid pathological examples such as the infinite-genus surface
in Figure 1.

Figure 1. An open surface of infinite genus

Theorem 23.8. Suppose M is an oriented smooth m-manifold of finite type
(without boundary). Then, the pairing (23.1) is non-degenerate; that is,

• ⟨[α],−⟩ = 0 ⇒ [α] = 0 ∈ Hk(M,R);
• ⟨−, [β]⟩ = 0 ⇒ [β] = 0 ∈ Hm−k

c (M,R).

Consequently,

(23.2) Hk(M,R) ∼= Hm−k
c (M,R)∗ ∀ k.

Since every real vector space is (non-canonically) isomorphic to its dual, we
conclude that the cohomology group in degree k has the same dimension
as the compactly supported cohomology group in degree m− k. For closed
manifolds, this reads

dimHk(M,R) = dimHm−k(M,R).
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The isomorphism (23.2) is known as Poincaré duality. Its proof below
uses the Poincaré Lemma, the Thom isomorphism, and an inductive argu-
ment based on the Mayer–Vietoris sequence and some homological algebra.

Proof of Theorem 23.8. For M = Rm, the statement follows directly
from the Poincaré Lemma and the Thom isomorphism.

Next, supposeM = U1∪U2, and assume that the statement of Theorem 23.8
holds for U1, U2, and their intersection U12 = U1∩U2. We aim to show that
it then holds for M as well.

For each k, consider the following commutative diagram:

Hk−1(U1,R)⊕Hk−1(U2,R) //

��

Hk−1(U12,R) //

��

Hk(M,R) //

��

Hk(U1,R)⊕Hk(U2,R) //

��

Hk(U12,R)

��
Hm−k+1

c (U1,R)∗ ⊕Hm−k+1
c (U2,R)∗ // Hm−k+1

c (U12,R)∗ // Hm−k
c (M,R)∗ // Hm−k

c (U1,R)∗ ⊕Hm−k
c (U2,R)∗ // Hm−k

c (U12,R)∗

Here, the top row is the Mayer–Vietoris sequence for the standard de Rham
cohomology, and the bottom row is the dual of the Mayer–Vietoris sequence
for compactly supported de Rham cohomology. The vertical maps are the
Poincaré duality isomorphisms from (23.2) for the respective open sets.

By assumption, the outer four vertical maps are isomorphisms. By the Five
Lemma (cf. [Wei94, Lemma 1.3.4]), stated below, the middle vertical map
is also an isomorphism.

Lemma 23.9. Let

A
a //

f1
��

B
b //

f2
��

C
c //

f3
��

D
d //

f4
��

E

f5
��

A′ a′ // B′ b′ // C ′ c′ // D′ d′ // E′

be a commutative diagram in an abelian category (e.g., abelian groups or
vector spaces over a field), with both rows exact. If f1 is an epimorphism,
f2 and f4 are isomorphisms, and f5 is a monomorphism, then f3 is also an
isomorphism.

Now suppose M is a smooth, oriented manifold of finite type. Then there
exists an open cover

M =

N⋃
α=1

Uα

such that every nonempty finite intersection Uα1 ∩· · ·∩Uαp is diffeomorphic
to Rm. We prove Theorem 23.8 by induction on N .



218 23. Cohomology in top degree

The base case N = 1 is covered by the case M = Rm. For the inductive
step, let

W1 = U1, W2 =

N⋃
α=2

Uα, W1 ∩W2 =

N⋃
α=2

(Uα ∩ U1).

By the induction hypothesis, Theorem 23.8 holds for W1, W2, and W1∩W2.
Applying the Mayer–Vietoris argument above, it follows that the statement
holds for M =W1 ∪W2.

□
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Solutions to exercises

Exercise 23.3. By Theorem 23.1, we have Hm(M ′) ∼= R. By Stokes’ The-
orem, both

∫
M f∗ω and

∫
M ′ ω depend only on the cohomology class of ω.

Moreover, replacing ω with a constant multiple does not change the ratio
that defines deg(f). Therefore, the formula for deg(f) is independent of the
choice of ω.

Suppose q ∈ M ′ is a regular value of f (which exists by Sard’s Theorem).
Since dimM = dimM ′, for any p ∈ f−1(q), the differential dpf : TpM →
TqM

′ is an isomorphism. Therefore, on a sufficiently small neighborhood
U of p, the map f is a diffeomorphism onto its image. In particular, the
preimages of q are isolated points. Since M is compact, f−1(q) is a finite
set:

f−1(q) = {p1, . . . , pk} ⊂M.

Furthermore, we can choose a sufficiently small neighborhood U ′ of q such
that

f−1(U ′) = U1 ∪ · · · ∪ Uk

is a disjoint union of neighborhoods Ui of pi, each of which maps diffeo-
morphically onto U ′ under f . By Theorem 23.1, there exists an m-form ω
supported in U ′ whose cohomology class generates Hm(M ′) ∼= R. For each
pi, let εi = ±1 depending on whether dpif : TpiM → TqM

′ is orientation-
preserving or not.

We have ∫
M
f∗ω =

k∑
i=1

∫
Ui

f∗ω =
k∑

i=1

εi

∫
U ′
ω =

(
k∑

i=1

εi

)∫
M ′
ω.

We conclude that

(23.3) deg(f) =
k∑

i=1

εi ∈ Z.

In other words, deg(f) is the signed count of preimage points of a regular
value q, with signs determined by comparing orientations. □

Exercise 23.4. In the context of holomorphic maps between closed holo-
morphic manifolds of the same dimension, the conclusion of the previous
exercise takes a simpler form. Since holomorphic diffeomorphisms are al-
ways orientation-preserving (see the solution to Exercise 15.13), the degree
of a holomorphic map is simply the actual number of preimage points of a
regular value q.
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We now show that every degree-d polynomial

p(z) = zd + ad−1z
d−1 + . . .+ a0

defines a holomorphic map p : CP1 → CP1. It is then easy to see that its
degree is d, because for generic q ∈ C, the equation p(z) = q has exactly d
solutions. As in Exercise 3.9, to extend the function p : C → C to CP1, we
must specify the image of the added point ∞ = [0 : 1] and show that p is
holomorphic near that point. First, we simply define

p(∞) = ∞.

Let w denote the local coordinate near ∞, related to the coordinate z on
C by w = 1/z; see the solution to Exercise 3.9. With respect to the local
coordinate w on both the domain and the target, the function p takes the
new form

w 7→ 1

p(1/w)
=

wd

1 + ad−1w + . . .+ a0wd
.

For w sufficiently close to 0, the denominator is nonzero, and the expression
defines a well-defined holomorphic function. We conclude that p : CP1 →
CP1 is holomorphic. □

Exercise 23.5. Switching C1 and C2 corresponds to composing f with
the antipodal map q 7→ −q of S2. The latter is an orientation preserving
diffeomorphism. Therefore, it does not change the degree.

For the second part, it is useful to extend the definition to links which are
disjoint union of embedded circles. Therefore, let each of M1 and M2 be a
finite disjoint union of S1, and let

γ1 : M1 −→ R3 and γ2 : M2 −→ R3

be embeddings with disjoint images L1 and L2. As before, define

f : M1 ×M2 → S2, (p1, p2) 7→
γ1(p1)− γ2(p2)

|γ1(p1)− γ2(p2)|
.

and let the linking number ℓ(L1, L2) of L1 and L2 to be the degree of the
map f . It is clear that ℓ is additive in components of L1 and L2.

Lemma 23.10. If C1 bounds an oriented surface Σ (such that the orienta-
tion on C1 is the boundary orientation), then ℓ(L1, L2) = 0.

Proof. The map f is the restriction to boundary of the well-defined smooth
map

F : Σ×M2 −→ S2, (p, q) 7→ γ1(p1)− γ2(p2)

|γ1(p1)− γ2(p2)|
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If ω is a volume form of S2, then dω = 0 and by Stokes’ Theorem

0 =

∫
Σ×M2

F ∗dω =

∫
Σ×M2

d(F ∗ω) =

∫
M1×M2

f∗ω = ℓ(L1, L2).

□

Moving to the general case, suppose L1 bounds an embedded surface trans-
verse to L2. Let {p1, . . . , pk} denote the points of intersections of Σ and
L2. Removing sufficiently small balls Bi on Σ centered at pi produces
a new surface Σ′ with additional boundary components γ1, . . . , γk. Let
L′
1 = L1 ∪ γ1 ∪ · · · ∪ γk where γi are given boundary orientation of Σ′.

By the Lemma above,

ℓ(L′
1, L2) = 0.

Therefore,

ℓ(L1, L2) = −
∑
i

ℓ(γi, L2).

Therefore, it is enough to prove that ℓ(γi, L2) = ±1 depending on the sign
of intersection of Σ and L2 and pi. Note that the boundary orientation on
γi coming from γi = ∂Bi is the opposite of the boundary orientation coming
from γi = ∂Σ′. Therefore, the desired result follows from the following
lemma.

Lemma 23.11. Suppose C2 ⊂ R3 is an oriented embedded circle, p ∈ C2,
and D is a sufficiently small oriented disk intersecting C2 transversely at p,
with boundary γ = ∂D. Then

ℓ(γ,C2) = ±1,

depending on whether the direct sum orientation on TpD⊕TpC2 agrees with
the standard orientation on R3 or is opposite to it.

Proof. Without loss of generality, and after applying a linear transforma-
tion, we may assume that p = 0 ∈ R3 = R2 × R, that

D = {(x, y) ∈ R2 : x2 + y2 ≤ ε2} × {0}

for some sufficiently small ε > 0, and that C2 is transverse to the plane
z = 0 with T0C2 = ∂z. Choose a direction v in

S1 = {(x, y) ∈ R2 : x2 + y2 = 1} × {0}

such that the line R · v intersects C2 only at 0 ∈ R3. Then, viewing v as a
point in S2, we find that f−1(v) consists of a single point p = (−εv, 0) ∈
γ×C2. It is easy to verify (using the transversality of C2 to the plane z = 0)
that v is a regular value. It follows from (23.3) that deg(f) = ±1, depending
on whether dpf is orientation-preserving or reversing.
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Now observe that the vector fields ∂θ on γ and ∂z on C2 determine an
oriented frame for Tp(γ × C2). Under dpf , this frame is mapped to (∂θ, ∂z)
at v, which is an oriented basis for TvS

2. Therefore, dpf is orientation-
preserving, and hence deg(f) = 1. □

□



Chapter 24

Flow of vector fields
and Lie derivative

Ordinary differential equations (ODEs) arise naturally in the study of mo-
tion and change, with their origins rooted in classical mechanics. Newton’s
laws, for instance, describe how the position and velocity of a particle evolve
over time, leading directly to second-order differential equations. More
broadly, an ODE expresses how a quantity changes infinitesimally in re-
sponse to another – often time. From a geometric point of view, ODEs form
a bridge between vector fields and diffeomorphisms: a vector field gives a
direction of motion at each point, while the solutions to the associated ODE
– called integral curves – trace out the actual paths followed. In this sense,
diffeomorphisms can be thought of as the “integrated” versions of vector
fields, capturing how points move under their flow. We will use these dif-
feomorphisms to understand how tensors change along a vector field. This
leads us to the notion of the Lie derivative.

Definition 24.1. Suppose M is a smooth manifold and X is a smooth
vector field on M . The ordinary differential equation (ODE) associated to
X with initial value p0 ∈M is given by

ẋ(t) = X(x(t)), x(0) = p0,

where ẋ(t) denotes the derivative of x(t) with respect to the “time” variable
t. A solution to this equation is a smooth curve x : I → M , for some time
interval I ∋ 0, such that x(0) = p0 and the tangent vector to the curve at
x(t) is equal to the vector X(x(t)). In other words, the curve follows the
direction of the vector field X at every point.

223
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Remark 24.2. If the manifold has a boundary, the domain I of a solution
curve may be a closed or half-open interval. For manifolds without boundary,
the maximal interval of existence is always an open subinterval of R. To keep
the discussion focused, we will sometimes consider only the boundaryless
case below.

In local coordinates x = (x1, . . . , xm) on a neighborhood of p0, the vector
field X takes the form

X(x) =
m∑
i=1

ai(x) ∂xi ,

and the solution curve xp0(t) starting at p0 corresponds to a collection
(x1(t), . . . , xm(t)) of m smooth functions satisfying the system of equations

ẋi = ai(x(t)) for all i = 1, . . . ,m.

Thus, calculations can be carried out locally in Rm, and as we move along
the integral curve, we can transition from one coordinate chart to another
to cover its entire domain. As a result, many results about ODEs on Rm

naturally extend to smooth manifolds with little extra work. However, the
nontrivial topology of a manifold can lead to interesting long-term behaviors
that make the theory richer and more subtle than in Euclidean space.

The following is the fundamental existence and uniqueness theorem in the
theory of ODEs; c.f. [Lee13, Theorems 9.11 and 9.15].

Theorem 24.3. (1) Suppose M is a smooth manifold without bound-
ary. Then for every point p0 ∈ M , there exists a maximal open
interval I = Ip0 = (−a, b), with a, b ∈ R+ ∪ {∞}, on which the
solution xp0 : (−a, b) →M to the ODE

ẋ(t) = X(x(t)), x(0) = p0

is defined and unique. As t approaches −a or b, the solution “es-
capes to infinity” in the sense that it eventually leaves every compact
subset of M . If M has a boundary, the solution may hit the bound-
ary in finite time, in which case the maximal interval of existence
may be half-open or closed.

(2) The endpoints (a, b) = (a(p0), b(p0)) and the solution curve vary
smoothly with the initial point p0.

Putting all initial points together (and assuming that M has no boundary),
the second statement implies that there exists an open subset U ⊂ R ×M
on which the flow function

Φ: U →M, (t, p) 7→ xp(t)

is defined and smooth. In the special case where M is closed (i.e., compact
with no boundary), and in many other examples, we have U = R×M . This
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is the setting that will arise in most of the exercises below.

Originally, we fixed the initial point and let t vary to obtain a curve. Now,
we fix t and allow the initial point p to vary. This gives a map

Φt : Ut
..= U ∩ ({t} ×M) →M,

where Ut ⊂ M is the set of points for which the flow exists at time t. It
follows from the uniqueness of solutions to ODEs that

Φt ◦ Φs = Φt+s

on the domain where both sides are defined.

Remark 24.4. If Ut =M , then Φt is a diffeomorphism of M , with inverse
Φ−t. More generally, as t→ 0, the sets Ut expand and exhaust M ; that is,

M =
⋃
t>0

Ut.

Therefore, in the limiting definitions that follow, we may treat Φt as though
it is defined on all of M .

Exercise 24.5. Find the solutions to the ODE

ẋ = Ax

on Rm, where A is a constant m×m matrix. Also, find the solutions to the
ODE

ẋ = x2

on R. For which (if either) of these two equations are the solutions defined
for all time?

Exercise 24.6. Compute the flow of the vector field

X =
n∑

i=1

xi∂yi

on R2n with coordinates (x = (x1, . . . , xn),y = (y1, . . . , yn)).

Exercise 24.7. SupposeX is a smooth vector field on a smooth manifoldM
and there exists a smooth function f : M −→ R such that X ·f = df(X) > 0.
Show that the flow of X has no periodic orbit (i.e., an integral curve γ : R →
M such that γ(t+T ) = γ(t) for some fixed T > 0 and all t ∈ R). Show that
the flow of any gradient vector field ∇f has no non-constant periodic orbit.

Exercise 24.8. Let X be a smooth vector field on a manifold M and
f : M −→ R± be a smooth function. Show every integral curve of fX is a
reparametrization of an integral curve of X. Prove that there is f : M −→
R+ such that every integral curve of fX is defined over the entire R.
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We can use the diffeomorphisms Φt to push forward vector fields (via dΦt)
or pull back differential forms (by composing with dΦt), and study how
these objects change as t varies. This leads to a notion of differentiation
along the flow of X for vector fields and differential forms, known as the Lie
derivative. For vector fields, we show that this derivative coincides with the
Lie bracket defined in Corollary 7.12. From this perspective, the Lie bracket
describes the extent to which the flows of two vector fields fail to commute.
We also prove an explicit expression for the Lie derivative of differential
forms, known as Cartan’s formula.

Definition 24.9. Suppose Φt is the flow of a vector field X on a manifold
M . For another vector field Y on M , the Lie derivative of Y along X is
the vector field

⃗
LXY = lim

t→0

(Φt)∗Y − Y

t
,

which is defined at every point x ∈ M by Remark 24.4. Similarly, for any
differential form η onM , the Lie derivative of η along X is the differential
form

LXη = lim
t→0

(Φt)
∗η − η

t
,

which has the same degree as η. In particular, for a differential 0-form, that
is, a smooth function f : M → R, we have

(24.1)

(LXf)(p) = lim
t→0

(Φt)
∗f − f

t

∣∣
p
= lim

t→0

f ◦ Φt(p)− f(p)

t

= lim
t→0

f(xp(t))− f(xp(0))

t
= df(ẋp(0))

= dpf(X(p)) = X · f
∣∣
p
;

i.e., the Lie derivative of a function is simply the derivative of the function
in the direction of the vector field.

Remark 24.10. In the definition of the Lie derivative of a vector field,
the arrow placed above L is nonstandard notation. We have included it to
remind the reader that push-forward with respect to Φt is being used. In
fact, as we will explain in the next section, to maintain compatibility with
the Lie derivative of differential forms, it is desirable to pull back vector
fields as well. Since Φ−t is the inverse of Φt, pulling back via Φt corresponds
to pushing forward via Φ−t. Therefore, we may define

⃗
LXY = lim

t→0

(Φ−t)∗Y − Y

t
.

This is indeed the definition found in many sources. Since Φ−t is the flow
of −X, it follows that

⃗
LXY = −

⃗
LXY.
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Theorem 24.11. Suppose Φt is the flow of a vector field X on a manifold
M . For any other vector field Y on M , we have

⃗
LXY = [Y,X] (or equivalently

⃗
LXY = [X,Y ])

Also, for any differential form η on M we have

LXη = d
(
ιXη

)
+ ιX

(
dη).

Proof. Since [Y,X] is defined as the commutator of the derivations corre-
sponding to X and Y , to prove the first relation, it suffices to show that
both sides act identically on any smooth function f : M → R. We compute:

(24.2)

((
⃗
LXY ) · f) |p =

((
lim
t→0

(Φt)∗Y − Y

t

)
· f
) ∣∣∣∣

p

= lim
t→0

(Y · (f ◦ Φt))(Φ−t(p))− (Y · f)(p)
t

.

By (7.1), there exists a function g(t, p) such that

f ◦ Φt(p) = f(p) + tg(t, p)

with g(0, p) = ∂
∂t(f ◦ Φt)

∣∣
t=0

= (X · f)(p). Substituting this expansion into
(24.2), we get:
(24.3)

((
⃗
LXY ) · f) |p = lim

t→0

(Y · f)(Φ−t(p))− (Y · f)(p)
t

+ lim
t→0

(Y · g(t, p))(Φ−t(p))

= (−X · Y · f + Y ·X · f)(p) = ([Y,X] · f)(p).
This proves the first statement.

To prove Cartan’s formula, we compare the Lie derivative operator LX with
the operator d ◦ ιX + ιX ◦ d. We show that these two operators agree on all
differential forms by verifying the following:

(1) Both operators satisfy the Leibniz rule:

LX(η1 ∧ η2) = LX(η1) ∧ η2 + η1 ∧ LX(η2),

and similarly for d ◦ ιX + ιX ◦ d.
(2) They agree on functions, i.e., differential 0-forms:

LXf = ιX(df) = X · f.
(3) They agree on 1-forms η:

LXη = d(ιXη) + ιX(dη).

Since smooth functions and 1-forms generate the algebra of all differential
forms under wedge product, and both operators satisfy the Leibniz rule, it
follows that

LX = d ◦ ιX + ιX ◦ d
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on all differential forms.

Item (2) was already established in (24.1). To prove that both operators
satisfy the Leibniz rule, we compute:
(24.4)

LX(η1 ∧ η2) = lim
t→0

(Φt)
∗(η1 ∧ η2)− η1 ∧ η2

t
= lim

t→0

(Φt)
∗η1 ∧ (Φt)

∗η2 − η1 ∧ η2
t

= lim
t→0

(
(Φt)

∗η1 − η1
t

∧ η2 + η1 ∧
(Φt)

∗η2 − η2
t

)
= LXη1 ∧ η2 + η1 ∧ LXη2.

So LX satisfies the Leibniz rule.

We now verify that d ◦ ιX + ιX ◦ d satisfies the same rule. First, recall:

ιX(η1 ∧ η2) = ιXη1 ∧ η2 + (−1)deg η1η1 ∧ ιXη2.

Applying d gives:

d ◦ ιX(η1 ∧ η2) = d(ιXη1 ∧ η2 + (−1)deg η1η1 ∧ ιXη2)

= d(ιXη1) ∧ η2 + (−1)deg ιXη1ιXη1 ∧ dη2

+ (−1)deg η1
[
dη1 ∧ ιXη2 + (−1)deg η1η1 ∧ d(ιXη2)

]
.

Now compute ιX ◦ d(η1 ∧ η2). Since

d(η1 ∧ η2) = dη1 ∧ η2 + (−1)deg η1η1 ∧ dη2,

we get

ιX ◦ d(η1 ∧ η2) = ιX(dη1 ∧ η2 + (−1)deg η1η1 ∧ dη2)

= ιX(dη1) ∧ η2 + (−1)deg dη1dη1 ∧ ιXη2

+ (−1)deg η1
[
ιXη1 ∧ dη2 + (−1)deg η1η1 ∧ ιX(dη2)

]
.

Adding the two expressions gives:

(d◦ ιX + ιX ◦d)(η1∧η2) = (d◦ ιX + ιX ◦d)(η1)∧η2+η1∧ (d◦ ιX + ιX ◦d)(η2),

so this operator also satisfies the Leibniz rule.

Finally, to prove item (3), we verify directly in local coordinates that the
two operators agree on 1-forms.

Choose local coordinates (x1, . . . , xm), and write

X =
∑
i

ai(x) ∂xi , η =
∑
j

bj(x) dxj .

By linearity and the Leibniz rule, it suffices to check the case where η = dxj .
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On one hand,

(d ◦ ιX + ιX ◦ d)(dxj) = d(ιXdxj) = d(aj).

On the other hand,

LX(dxj) = lim
t→0

(Φt)
∗dxj − dxj
t

= lim
t→0

d(xj ◦ Φt)− dxj
t

= lim
t→0

d

(
xj ◦ Φt − xj

t

)
= d(ẋj) = d(aj).

Hence, both operators agree on 1-forms. □

Example 24.12. If M is an oriented m-manifold equipped with a volume
form ω, then

LXω = d(ιXω) = Divω(X)ω,

where Divω(X) denotes the divergence of X with respect to ω, as defined
earlier in Section 19. If Divω(X) = 0, this means that the flow Φt of X
preserves the volume of any m-dimensional region, although it may distort
its shape.

Exercise 24.13. Let

X = −y ∂
∂x

+ x
∂

∂y
.

For a volume form

ω = fdx ∧ dy
on R2, show that LXω = 0 iff f is a function of distance from the origin.

Exercise 24.14. Suppose ω is a 2-form on a manifold M . We say that ω is
non-degenerate if ω(u, ·) = 0 implies u = 0 for all u ∈ TpM . In other words,
the map

TpM → T ∗
pM, u 7→ u♭ ..= ω(u, ·)

is an isomorphism. (This is the skew-symmetric analogue of a Riemannian
metric.)

Now suppose ω is closed and non-degenerate. Such a form is called a
symplectic form. By the isomorphism above, for every smooth function
h : M → R, there exists a unique vector field X defined by

ιXω = −dh.

(1) Show that LXω = 0.

(2) Show that h is constant along integral curves of X. (The vec-
tor field X is called the Hamiltonian vector field associated to the
Hamiltonian function h, and the ODE defined by X is called a
Hamiltonian system.)
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(3) Show that the action

S1 × Cn → Cn, (eit, (z1, . . . , zn)) 7→ (eitz1, . . . , e
itzn)

is Hamiltonian with respect to the symplectic form

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn,
on Cn ∼= R2n, where xi and yi are the real and imaginary parts of
zi = xi + iyi. That is, the orbits of this action are integral curves
of a Hamiltonian vector field.

Remark 24.15. Hamiltonian ODEs arise naturally in classical mechanics,
where the function h is typically the energy of the system (often the sum
of kinetic and potential energy). The condition ιXω = −dh encodes the
equations of motion, and the fact that LXω = 0 implies that the symplectic
structure – and hence the phase space volume – is preserved under time
evolution. The conservation of h along integral curves of X reflects the
physical principle of energy conservation.

Exercise 24.16. Let (x, y, z, w) be the standard coordinates of the Eu-
clidean space R4. Let X = ∂z and ω = (xyz)dz ∧ dx. Compute the Lie
derivative LXω.

Exercise 24.17. Let m ≥ 2, and let M be a smooth oriented m-manifold
equipped with a volume form ω. For any (m− 2)-form η ∈ Ωm−2(M), show
that the equation

ιXω = dη

defines a unique vector field X on M associated to η. Show further that
this vector field is volume-preserving, in the sense that the volume form ω
is invariant under its flow.

What cohomological condition on M is equivalent to the statement that
every volume-preserving vector field arises from some η in this way?
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Solutions to exercises

Exercise 24.5. If m = 1, then A is a constant and the ODE

ẋ = Ax

can be rewritten as d
dt ln(x) = A, which has the solution x(t) = etAx(0) for

any initial value x(0). The same formula makes sense when A is a matrix
rather than just a number, where

etA =
∞∑
n=0

(tA)n

n!
.

The solutions are thus defined for all time t.

Similarly to the previous example, we can rewrite ẋ = x2 as

d

dt
(−x−1) = 1,

which has the solution

−x−1(t) = t− x−1(0),

or

x(t) =
x(0)

1− tx(0)
.

Clearly, as t→ 1
x(0) , the solution approaches ∞. We conclude that for initial

values x(0) ̸= 0, the solutions are not defined for all time. For x(0) = 0,
the solution x(t) is constantly 0; i.e., x = 0 is a fixed point of the ODE flow
Φt. □

Exercise 24.6. The ODE equations of X are

ẋi = 0 and ẏi = xi ∀ i = 1, . . . , n.

Therefore, on any integral curve, the xi-coordinates are fixed and the yi-
coordinates change linearly by txi; i.e.,

(x(t),y(t)) = (x(0),y(0) + tx(0)).

□

Exercise 24.7. By the chain rule, the condition X · f = df(X) > 0 means
that f is increasing along integral curves γ of X. The only increasing func-
tions on S1 are constant functions. This can only occur if γ is the constant
map γ(t) = p, which implies X(p) = 0, and hence p is a fixed point of the
flow of X.

For any Riemannian metric g on M , we have

df(∇f) = g(∇f,∇f) ≥ 0,
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with equality if and only if ∇f = 0. The result now follows from the discus-
sion above. □

Exercise 24.8. Suppose

γ : I →M

is an integral curve of X, i.e., γ̇(t) = X(γ(t)) for all t ∈ I. Suppose

h : J → I, s 7→ t = h(s),

is a reparametrization of I by a smooth map, and define γ̃(s) = γ(h(s)). By
the chain rule,

d

ds
γ̃(s) =

(
d

dt
γ

)
(h(s)) · dh

ds
= X(γ̃(s)) · dh

ds
.

If
dh

ds
= f(γ̃(s)),

then γ̃ is an integral curve of fX, showing that every integral curve of fX
is a reparametrization of an integral curve of X. To find the appropriate h,
it is easier to determine its inverse, since the equation above implies

ds

dt
=

1
dt
ds

=
1

f(γ̃(s))

∣∣∣
s=h−1(t)

=
1

f(γ(t))
.

Given the integral curve γ(t), we find that

h−1(t) =

∫ t

0

1

f(γ(τ))
dτ

has the desired property.

For the second part, if M is compact, then any smooth vector field on M
is complete, i.e., all its integral curves are defined for all time. In this case,
taking f = 1 suffices. Thus, we may assume that M is non-compact. We
want to choose f such that the range of h−1 is all of R for each integral curve
of X. In other words, as p approaches the “infinity” ofM , the function f(p)
must decay to zero sufficiently fast.

Let {Kn}n≥0 be an exhaustion of M by compact subsets such that

Kn ⊂ K◦
n+1 and

⋃
n≥0

Kn =M.

For each n, choose a smooth function χn : M → [0, 1] such that χn ≡ 1
on Kn \ K◦

n−1 and supp(χn) ⊂ K◦
n+1 \ Kn−2. (Here we define Kn = ∅ for
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n < 0.) We will use this to construct a Riemannian metric g on M with the
following property: for any n0,

lim
n→∞

distg(Kn0 ,M \K◦
n) = ∞.

In other words, as n → ∞, the length of any curve that starts in Kn0 and
exits Kn must diverge.

Let g0 be an arbitrary Riemannian metric on M . Set c0 = 1. For each
n > 0, choose cn > 0 such that

distcng0(Kn−1,M \K◦
n) = 1.

Then define

g =

( ∞∑
n=0

cnχn

)
g0.

This sum converges because every point p ∈M lies in the support of at most
three of the χn. Moreover, g satisfies the desired property because

distg(Kn0 ,M \K◦
n) ≥

n∑
ℓ=n0+1

distg(Kℓ−1,M \K◦
ℓ )

≥
n∑

ℓ=n0+1

distcℓg0(Kℓ−1,M \K◦
ℓ ) = n− n0.

With respect to the Riemannian metric g defined above, let

g(p) =
√
g(X(p), X(p)) ∀ p ∈M.

Let f : M → R+ be any smooth function such that

f(p) ≤ 1

g(p)
,

or equivalently,
1

f(p)
≥ g(p)

for all p ∈ M . Then the vector field Y = fX satisfies |Y (p)| ≤ 1 for all
p ∈M . Therefore, any integral curve of Y defined over a finite interval [a, b)
or (b, a] remains in some Kn. By Theorem 24.3, any maximal integral curve
of Y must be defined on all of R. □

Exercise 24.13. We have

LXω = dιXω = −d
(
f(x, y)(ydy + xdx)

)
=

−1

2
d
(
f(r, θ)rdr

)
=
r

2

∂f

∂θ
dr ∧ dθ.
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Therefore, LXω = 0 iff f is a function r. □

Exercise 24.14. Since ω is closed, we have

LXω = dιXω = −d(dh) = 0.

We have

X · h = dh(X) = −ω(X,X) = 0.

Therefore, h is constant along integral curves of X.

Differentiating the action with respect to t we get

d

dt
(eitz1, . . . , e

itzn) = i(eitz1, . . . , e
itzn).

We conclude that each (eitz1, . . . , e
itzn) is an integral curve of the ODE

ż = X(z) = i z.

In real coordinates,

X(x1, . . . , xn, y1, . . . , yn) =

n∑
i=1

−yi∂xi + xi∂yi .

Therefore,

−ιXω = d
1

2

n∑
i=1

x2i + y2i .

We conclude that the action in the question is the hamiltonian ODE flow of
the hamiltonian h = 1

2

∑n
i=1 x

2
i + y2i . □

Exercise 24.16. We have

LXω =dι∂zω + ι∂zdω = d
(
xyz dx) + ι∂z

(
xz dy ∧ dz ∧ dx)

xy dz ∧ dx+ xz dy ∧ dx− xz dy ∧ dx = xy dz ∧ dx.
□

Exercise 24.17. The map

Γ(M,TM) −→ Ωm−1(M), X 7−→ ιXω

defines an isomorphism between the space of vector fields onM and the space
of differential (m − 1)-forms (see the solution to Exercise 17.1). Therefore,
for any (m − 2)-form η ∈ Ωm−2(M), there exists a unique vector field X
satisfying

ιXω = dη.

The Lie derivative of ω with respect to X is

LXω = dιXω = d(dη) = 0.
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Therefore, the volume form ω is invariant under the flow of X.

Conversely, suppose
LXω = dιXω = 0;

i.e., ιXω is a closed form. If Hm−1(M,R) = 0, then every closed (m − 1)-
form is exact, and there exists η ∈ Ωm−2(M) such that ιXω = dη. This
condition is both necessary and sufficient, since any closed (m−1)-form can
be written as ιXω for a unique vector field X.





Chapter 25

Tensor fields and Lie
derivative

In previous sections, we have studied various examples of tensors, such as
vector fields, differential forms, and metrics. In general, given a finite-
dimensional real vector space V , a tensor of type (p, q) is an element

T ∈ V × · · · × V︸ ︷︷ ︸
p copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
q copies

.

Equivalently, a tensor is often defined as a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
p copies

×V × · · · × V︸ ︷︷ ︸
q copies

−→ R.

Examples of tensors on a vector space V :

• Type (0, 0): Scalars (real numbers).

• Type (1, 0): Vectors (elements of V ).

• Type (0, 1): Covectors or linear forms (elements of V ∗).

• Type (1, 1): Linear transformations (elements of V⊗V ∗ ∼= Hom(V, V )).

We can then require additional properties. For instance, symmetric positive-
definite (0, 2)-tensors correspond to inner products on V .

The above definition extends pointwise to any vector bundle E → M , and
in particular to the tangent bundle TM of a smooth manifold.

Definition 25.1. A tensor field of type (p, q) on M is a smooth section
of the bundle

TM⊗p ⊗ T ∗M⊗q.

237
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Common examples of tensor fields on a manifold M :

• Type (0, 0): Smooth functions on M .

• Type (1, 0): Vector fields.

• Type (0, k) and skew-symmetric: Differential k-forms.

• Type (0, 2), symmetric and positive-definite: Riemannian metrics.

In the previous section, we studied the Lie derivative of vector fields and
differential forms and obtained explicit formulas in each case. A natural
question is whether these two notions of Lie derivative are related.

In fact, the Lie derivative can be defined for arbitrary tensor fields, and
it satisfies a product rule in the following sense: if τ1 is a tensor field of
type (p1, q1) and τ2 is of type (p2, q2), then τ1 ⊗ τ2 is a tensor of type
(p1 + p2, q1 + q2), and

(25.1) LX(τ1 ⊗ τ2) = (LXτ1)⊗ τ2 + τ1 ⊗ (LXτ2).

To define the Lie derivative for tensors of mixed type, one must apply the
same operation – either pullback or push-forward – to both the TM and
T ∗M components. In order to preserve Cartan’s formula, it is standard
practice to use pullbacks: that is, to define the Lie derivative of a (p, q)-
tensor, we apply Φ∗

t
..= (Φ−t)∗ to the p vector field components and Φ∗

t to
the q covector components. In conclusion, the operator

LXτ = lim
t→0

Φ∗
t τ − τ

t

is well-defined on all tensor fields. It recovers the identity LXη = (d ◦ ιX +
ιX ◦ d)η for differential forms and

⃗
LXY = [X,Y ] for vector fields.

For the rest of this section, we adopt the pullback convention and simply
write LXY when referring to the Lie derivative of a vector field.

Lemma 25.2. Lie derivative of tensors satisfies the Leibniz formula (25.1).

Proof. As in (24.4), since pullback and tensor product commute, we have

LX(τ1 ⊗ τ2) = lim
t→0

Φ∗
t (τ1 ⊗ τ2)− (τ1 ⊗ τ2)

t

= lim
t→0

Φ∗
t (τ1)⊗ Φ∗

t (τ2)− Φ∗
t (τ1)⊗ τ2 +Φ∗

t (τ1)⊗ τ2 − τ1 ⊗ τ2
t

= lim
t→0

Φ∗
t (τ1)⊗ (Φ∗

t (τ2)− τ2) + (Φ∗
t (τ1)− τ1)⊗ τ2

t
= LX(τ1)⊗ τ2 + τ1 ⊗ LX(τ2).

□
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Remark 25.3. The general product formula above, and the scalar version
we use below, are related by “taking the trace.”

Given a (p, 0)-tensor τ1 and a (0, p)-tensor τ2, we can form their tensor
product τ = τ1⊗τ2, which is a (p, p)-tensor. The Lie derivative of τ satisfies
the Leibniz rule (25.1), producing an equality of (p, p)-tensors.

On the other hand, contracting τ1 and τ2 yields a smooth function f =
τ2(τ1), whose Lie derivative also satisfies a product rule:

LXf = (LXτ2)(τ1) + τ2(LXτ1).

These two formulas are related via the fact that contraction is compatible
with the Lie derivative: taking the Lie derivative of a contraction is the same
as contracting the Lie derivative.

In this sense, the scalar product rule arises from the tensor-level formula
by “taking the trace.” Our proof of this compatibility below is given in the
specific context of vector fields contracting differential forms.

As a starting point, suppose η is a differential 1-form, and X, Y are vector
fields. Then the function f = η(X) is smooth, and we will prove that

df(Y ) = Y · f = LY f = (LY η)(X) + η(LYX).

Using the formulas from the previous section, we compute:

Y · (η(X)) = (dιY η)(X) + (ιY dη)(X)− η([X,Y ])

= X · (η(Y )) + (dη)(Y,X)− η([X,Y ]).

Rearranging terms gives the following formula for dη in terms of how it acts
on vector fields:

dη(X,Y ) = X · (η(Y ))− Y · (η(X))− η([X,Y ]).

In general, we obtain the following:

Theorem 25.4. If η is a k-form, then dη is the (k + 1)-form whose action
on k + 1 vector fields X0, . . . , Xk is given by
(25.2)

(dη)(X0, . . . , Xk) =
k∑

j=0

(−1)jXj · η(X0, . . . , X̂j , . . . , Xk)

+
∑
i<j

(−1)i+jη
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
.

Here, we provide a computational proof based on calculations in local charts.
A coordinate-free proof is also possible by applying the product rule and
expanding LX0(η(X1, . . . , Xk)), as we did above.
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Proof. It is easy to verify that the equation is local, linear in each input,
and skew-symmetric on both sides. So we only need to verify it for a single
local expression

η = f(x) dxi1 ∧ · · · ∧ dxik ,
and Xa = ga(x) ∂xja

for a = 0, . . . , k. To eliminate the coefficients ga and
simplify the task, we first prove that if (25.2) holds for (X0, . . . , Xk), then
it also holds for (g(x)X0, X1, . . . , Xk). By symmetry, the same is true if we
modify other inputs.

Using the identity

[gX0, Xi] = g[X0, Xi]− (Xi · g)X0,

we compute:

(dη)(gX0, X1, . . . , Xk)− g X0 · η(X1, . . . , Xk)

−
k∑

a=1

(−1)aXa · η(gX0, . . . , X̂a, . . . , Xk)

−
k∑

a=1

(−1)aη([gX0, Xa], X1, . . . , X̂a, . . . , Xk)

−
∑

1≤a<b≤k

(−1)a+bη([Xa, Xb], gX0, . . . , X̂a, . . . , X̂b, . . . , Xk)

= g
(
(dη)(X0, . . . , Xk)−

k∑
a=0

(−1)aXa · η(X0, . . . , X̂a, . . . , Xk)

−
∑

0≤a<b≤k

(−1)a+bη([Xa, Xb], X0, . . . , X̂a, . . . , X̂b, . . . , Xk)
)

−
k∑

a=1

(−1)a(Xa · g) η(X0, . . . , X̂a, . . . , Xk)

+

k∑
b=1

(−1)b(Xb · g) η(X0, . . . , X̂b, . . . , Xk).

The last two terms cancel out, and we obtain the desired result.

Having reduced the problem to the case Xa = ∂xja
for all a = 0, . . . , k, we

compute:
(25.3)

(dη)(X0, . . . , Xk) =
∑
i0

∂f

∂xi0
(dxi0 ∧ dxi1 ∧ · · · ∧ dxik) (∂xj0

, . . . , ∂xjk
)

=
∑

i0∈{j0,...,jk}

∂f

∂xi0
(dxi0 ∧ dxi1 ∧ · · · ∧ dxik) (∂xj0

, . . . , ∂xjk
).
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On the other hand,

k∑
a=0

(−1)aXa · η(X0, . . . , X̂a, . . . , Xk)

+
∑
a<b

(−1)a+bη([Xa, Xb], X0, . . . , X̂a, . . . , X̂b, . . . , Xk)

=

k∑
a=0

(−1)a∂xja

(
f(x) dxi1 ∧ · · · ∧ dxik(∂xj0

, . . . , ∂̂xja
, . . . , ∂xjk

)
)

=

k∑
a=0

(−1)ja
∂f

∂xja
(dxja ∧ dxi1 ∧ · · · ∧ dxik) (∂xja

, ∂xj0
, . . . , ∂̂xja

, . . . , ∂xjk
).

Moving ∂xja
forward to its correct position eliminates (−1)ja and we get the

same expression as (25.3). □

Differential 2-forms and metrics are both tensors of type (0, 2) – the former
being skew-symmetric, the latter symmetric. Therefore, given a vector field
X and a Riemannian metric g on a manifold M , the Lie derivative of g
with respect to X is the symmetric (but not necessarily positive-definite)
(0, 2)-tensor

(25.4) LXg = lim
t→0

Φ∗
t g− g

t
∈ Γ(M,Sym2(T ∗M)).

where Φt is the flow of X. We say that X is a Killing vector field if
LXg = 0. In other words, the flow of X consists of isometries. We state,
without proof, the following result, which follows from applying the product
rule and expanding LX(g(Y,Z)) (see [Lee13, Proposition 12.15]).

Theorem 25.5. Let g be a Riemannian metric on a manifold M , and let
X,Y, Z be vector fields on M . Then

(LXg)(Y, Z) = X · g(Y,Z)− g([X,Y ], Z)− g([X,Z], Y ).

Exercise 25.6. Recall that a Riemannian metric g identifies the space of
vector fields and 1-forms by sending a vector field Y to the 1-form Y ♭ =
g(Y,−). Show that if X is a Killing vector field, then this identification
commutes with the Lie derivative; that is,

(LXY )♭ = LX(Y ♭).

Exercise 25.7. Let g be the standard Euclidean metric on R2, and let
X = x∂x + y∂y. Compute LXg.
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Exercise 25.8. An operator D acting on sections of a vector bundle E
over a smooth manifold M (such as tensor fields) is called tensorial if it is
C∞(M)-linear; that is,

D(fξ) = fD(ξ) for all f ∈ C∞(M), ξ ∈ Γ(E).

By first showing that the operators

LX ◦ LY − LY ◦ LX − L[X,Y ] and ι[X,Y ] − LX ◦ ιY + ιY ◦ LX

are tensorial, prove the identities

[LX , LY ] := LX◦LY −LY ◦LX = L[X,Y ] and ι[X,Y ] = [LX , ιY ] := LX◦ιY −ιY ◦LX .
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Solutions to exercises

Exercise 25.6. We show that (LXY )♭ and LX(Y ♭) act identically on any
vector field Z. By definition,

(LXY )♭(Z) = g(LXY,Z) = g([X,Y ], Z).

On the other hand, using the product rule,

(LX(Y ♭))(Z) = LX(Y ♭(Z))− Y ♭(LXZ) = LX(g(Y, Z))− g(Y, [X,Z]).

Therefore, the identity we seek to verify is

g([X,Y ], Z) = LX(g(Y,Z))− g(Y, [X,Z]),

which is equivalent to

X · g(Y, Z) = LX(g(Y,Z)) = g([X,Y ], Z) + g([X,Z], Y ).

The latter equality follows from Theorem 25.5 and the assumption that
LXg = 0.

□

Exercise 25.7. Using Theorem 25.5, we find the symmetric (0, 2)-tensor
LXg by computing its action on basis vector fields. There are three terms
to calculate.

We have

(LXg)(∂x, ∂x) = X · g(∂x, ∂x) + 2g([∂x, X], ∂x).

The first term on the right-hand side is zero, and

[∂x, X] = [∂x, x∂x + y∂y] = [∂x, x∂x] + [∂x, y∂y] = ∂x.

Therefore,

(LXg)(∂x, ∂x) = 2.

By symmetry of the problem, we similarly have

(LXg)(∂y, ∂y) = 2.

Finally,

(LXg)(∂x, ∂y) = g([∂x, X], ∂y) + g([∂y, X], ∂x) = 0,

since g(∂x, ∂y) = 0.

We conclude that

LXg = 2g.

This can also be verified directly from the definition (25.4). The flow of the
radial vector field X is

Φt(x, y) = et(x, y).

Therefore,

Φ∗
t g = Φ∗

t (dx⊗ dx+ dy ⊗ dy) = e2tg.
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We conclude that

LXg =
d

dt

(
e2tg

)∣∣∣∣
t=0

= 2g.

□

Exercise 25.8 Suppose T is a type (r, s) tensor field and f ∈ C∞(M). We
will use the Leibniz rule for Lie derivatives,

LX(fT ) = (X · f)T + fLXT,

to compute

[LX , LY ](fT ) = LX(LY (fT ))− LY (LX(fT )).

Using the Leibniz rule we obtain

LX(LY (fT )) = LX((Y · f)T + fLY T )

= X · (Y · f)T + (Y · f)LXT +X · f LY T + fLXLY T.

Similarly,

LY (LX(fT )) = Y · (X · f)T + (X · f)LY T + Y · f LXT + fLY LXT.

Subtracting these, many terms cancel, and we find:

[LX , LY ](fT ) = f [LX , LY ]T + (X · (Y · f)− Y · (X · f))T.

On the other hand,

L[X,Y ](fT ) = ([X,Y ] · f)T + fL[X,Y ]T.

So the difference(
[LX , LY ]− L[X,Y ]

)
(fT ) = f([LX , LY ]− L[X,Y ])(T )

is C∞(M)-linear, hence tensorial.

Similarly, for the second identity, note that the interior product ιY is tenso-
rial:

ιY (fT ) = fιY T.

Then,

LX(ιY (fT )) = LX(fιY T ) = (X · f)ιY T + fLXιY T,

ιY (LX(fT )) = ιY ((X · f)T + fLXT ) = (X · f)ιY T + fιY LXT.

Subtracting gives:

[LX , ιY ](fT ) = f [LX , ιY ](T ),

so [LX , ιY ] is tensorial. Since ι[X,Y ] is also tensorial, their difference is ten-
sorial: (

ι[X,Y ] − [LX , ιY ]
)
(fT ) = f

(
ι[X,Y ] − [LX , ιY ]

)
(T ).
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Since the differences [LX , LY ] − L[X,Y ] and ι[X,Y ] − [LX , ιY ] are tensorial,
they are determined pointwise. It therefore suffices to verify that they vanish
on constant tensors at a point.

To simplify things further, we show that both [LX , LY ]−L[X,Y ] and ι[X,Y ]−
[LX , ιY ] satisfy the Leibniz rule.

Let T1, T2 be tensor fields. Using the product rule for the Lie derivative
repeatedly, we get

[LX , LY ](T1 ⊗ T2) = LX(LY (T1 ⊗ T2))− LY (LX(T1 ⊗ T2))

= LX((LY T1)⊗ T2 + T1 ⊗ (LY T2))

− LY ((LXT1)⊗ T2 + T1 ⊗ (LXT2))

= (LXLY T1)⊗ T2 + (LY T1)⊗ LXT2

+ LXT1 ⊗ LY T2 + T1 ⊗ LXLY T2

− (LY LXT1)⊗ T2 − (LXT1)⊗ LY T2

− LY T1 ⊗ LXT2 − T1 ⊗ LY LXT2

= ([LX , LY ]T1)⊗ T2 + T1 ⊗ ([LX , LY ]T2).

On the other hand,

L[X,Y ](T1 ⊗ T2) = (L[X,Y ]T1)⊗ T2 + T1 ⊗ (L[X,Y ]T2).

We conclude that [LX , LY ]− L[X,Y ] satisfies the Leibniz rule.

The proof for ι[X,Y ] − [LX , ιY ] is similar and left to the reader.

In conclusion, we have shown that

[LX , LY ] = L[X,Y ] and [LX , ιY ] = ι[X,Y ]

are tensorial and satisfy the Leibniz rule. Since the differences vanish on
constant vector fields and differential 1-forms (check in your own), they
vanish identically. □





Chapter 26

Straightening Theorem

Every vector field X is locally of the form

X =

m∑
i=1

ai(x)
∂

∂xi

for some smooth coefficient functions ai. A natural and useful question
is whether there exist local coordinates in which all the coefficients ai are
constant. This would imply that their partial derivatives vanish, greatly
simplifying many calculations. If such coordinates exist (and X is nontriv-
ial), one can further perform a linear change of variables to obtain local
coordinates in which

X =
∂

∂x1
.

The question becomes more challenging and interesting when one considers
not just one vector field, but several vector fields, and asks whether there
exist local coordinates in which all of them take the form

Xi =
∂

∂xi

for i = 1, . . . , k. Surprisingly, this problem has an elegant solution known
as the Straightening Theorem (also called the Flow-box Theorem or the
Frobenius Theorem in the integrable distribution case).

The proof of the Straightening Theorem relies on the relationship between
the Lie bracket [X,Y ] of two vector fields and the commutativity of their
flows ΦX

t and ΦY
t . More precisely, for each point p ∈M and for sufficiently

small t, consider the path

γ(t) = ΦY
−t ◦ ΦX

−t ◦ ΦY
t ◦ ΦX

t (p).

247
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This path is constant (meaning γ(t) ≡ p) if and only if the flows ΦX
t and

ΦY
t commute. Moreover, as we will establish in exercises,

(26.1) γ̇(0) = 0 and
1

2

d2

dt2
γ(t)

∣∣∣∣
t=0

is exactly the Lie bracket [X,Y ](p). Therefore, the vanishing of the Lie
bracket [X,Y ] = 0 characterizes the local commutativity of the flows, which
is a key ingredient in straightening vector fields simultaneously.

Theorem 26.1. The flows ΦX
t and ΦY

s of X and Y commute, i.e.,

ΦY
s ◦ ΦX

t
∼= ΦX

t ◦ ΦY
s ∀ s, t

if and only if [X,Y ] = 0.

Proof. It is a simple yet critical observation that if φ : M →M is a diffeo-

morphism, then the ODE flows ΦX
t and Φφ∗X

t are related by

Φφ∗X
t = φ ◦ ΦX

t ◦ φ−1.

Therefore, since ΦY
−s = (ΦY

s )
−1, the composition

ΦY
s ◦ ΦX

t ◦ ΦY
−s

is the ODE flow of (ΦY
s )∗X. Hence, the commutativity of ΦX

t and ΦY
s is

equivalent to

ΦX
t = Φ

(ΦY
s )∗X

t for all s, t.

Since two flows are equal if and only if their generating vector fields are
equal, this means

X = (ΦY
s )∗X for all s.

If this holds for sufficiently small s, then by Theorem 24.11,

[X,Y ] = lim
s→0

(ΦY
s )∗X −X

s
= 0.

Conversely, suppose [X,Y ] = 0. For every point p ∈ M , define a path γ(s)
in the vector space TpM by

γ(s) = (ΦY
s )∗
(
X(ΦY

−s(p))
)
.

Thanks to the linear structure on TpM , we have

γ̇(s) = lim
h→0

γ(s+ h)− γ(s)

h

= lim
h→0

(ΦY
s+h)∗

(
X(ΦY

−s−h(p))
)
− (ΦY

s )∗
(
X(ΦY

−s(p))
)

h

= (ΦY
s )∗ lim

h→0

(ΦY
h )∗
(
X(ΦY

−h(q))
)
−X(q)

h
,
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where q = ΦY
−s(p). But by the definition of the Lie bracket,

lim
h→0

(ΦY
h )∗
(
X(ΦY

−h(q))
)
−X(q)

h
= [X,Y ](q) = 0.

Therefore, γ̇(s) = 0, so γ(s) is constant and equal to γ(0) = X(p). This
implies

X = (ΦY
s )∗X for all s,

as desired. □

Exercise 26.2. For any p ∈ M , choose local coordinates around p so that
p corresponds to 0 ∈ Rm, and write the vector fields X,Y locally as

X(x) =
m∑
i=1

ai(x)∂xi , Y (x) =

m∑
i=1

bi(x)∂xi .

Then the Taylor expansion of the flow of X near 0 up to second order in t is

ΦX
t (x) = x+ tX(x) +

t2

2
(DX)(x) ·X(x) +O(t3),

where (DX)(x) is the Jacobian matrix of the coefficient functions of X at
x, acting on vectors. The same holds for Y . Use this to prove that for

γ(t) := ΦY
−t ◦ ΦX

−t ◦ ΦY
t ◦ ΦX

t (p),

we have
γ(t) = p+ t2[X,Y ](p) +O(t3).

Theorem 26.3 (Straightening Theorem). Suppose X1, . . . , Xk are vector
fields on a smooth manifold M , and let p ∈M . Further, assume that

(1) The vector fields X1, . . . , Xk are linearly independent on an open
neighborhood of p,

(2) The vector fields commute pairwise; that is, [Xi, Xj ] = 0 on an
open neighborhood of p for all 1 ≤ i, j ≤ k.

Then there exist local coordinates (x1, . . . , xm) defined on a sufficiently small
neighborhood of p such that

Xi =
∂

∂xi
, i = 1, . . . , k.

Proof. It is simple linear algebra that we can choose local coordinates
(y1, . . . , ym) near p such that p corresponds to 0 ∈ Rm and Xi(0) = ∂

∂yi
for i = 1, . . . , k.

Define a map φ on a sufficiently small neighborhood of 0 ∈ Rm by

(y1, . . . , ym) = φ(x1, . . . , xm) := ΦX1
x1

◦ · · · ◦ ΦXk
xk

(0, . . . , 0, xk+1, . . . , xm).

It is straightforward to check that d0φ = idRm ; hence, φ is a local diffeo-
morphism fixing the origin.
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Moreover, for each i = 1, . . . , k, using the commutativity of the flows (which
follows from [Xi, Xj ] = 0), we compute:

φ∗(∂xi)|y=φ(x) = dxφ(∂xi)

=
d

dt

∣∣∣∣
t=0

ΦX1
x1

◦ · · · ◦ ΦXi
xi+t ◦ · · · ◦ ΦXk

xk
(0, . . . , 0, xk+1, . . . , xm)

=
d

dt

∣∣∣∣
t=0

ΦXi
t

(
ΦX1
x1

◦ · · · ◦ ΦXi
xi

◦ · · · ◦ ΦXk
xk

(0, . . . , 0, xk+1, . . . , xm)
)

=
d

dt

∣∣∣∣
t=0

ΦXi
t (y) = Xi(y).

This completes the proof. □

Exercise 26.4. Consider the vector fields

X = f(x) ∂y and Y = g(y) ∂x

on R2. Find necessary and sufficient conditions on the pair (f, g) such that
there is a diffeomorphism φ : R2 −→ R2 with

φ∗(∂x) = X and φ∗(∂y) = Y.
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Exercise 26.2. Without loss of generality, take p = 0 ∈ Rm.

Using the given expansions,

ΦX
t (0) = 0 + tX(0) +

t2

2
(DX)(0) ·X(0) +O(t3),

ΦY
t (x) = x+ tY (x) +

t2

2
(DY )(x) · Y (x) +O(t3).

Step 1: Compute ΦY
t ◦ ΦX

t (0):

ΦY
t (Φ

X
t (0)) = ΦX

t (0) + tY (ΦX
t (0)) +

t2

2
(DY )(ΦX

t (0)) · Y (ΦX
t (0)) +O(t3).

Expand Y (ΦX
t (0)) near 0:

Y (ΦX
t (0)) = Y (0)+(DY )(0)·

(
tX(0)+O(t2)

)
+O(t2) = Y (0)+t(DY )(0)X(0)+O(t2).

Similarly,

(DY )(ΦX
t (0)) · Y (ΦX

t (0)) = (DY )(0)Y (0) +O(t).

Thus,

ΦY
t ◦ΦX

t (0) = t(X(0)+Y (0))+
t2

2

(
(DX)(0)X(0)+2(DY )(0)X(0)+(DY )(0)Y (0)

)
+O(t3).

Step 2: Apply ΦX
−t to the above:

ΦX
−t(z) = z − tX(z) +

t2

2
(DX)(z) ·X(z) +O(t3).

Expand X(z) around 0 with

z = t(X(0) + Y (0)) +O(t2),

so

X(z) = X(0)+(DX)(0)z+O(t2) = X(0)+ t(DX)(0)(X(0)+Y (0))+O(t2).

Similarly,

(DX)(z) ·X(z) = (DX)(0)X(0) +O(t).

Hence,

ΦX
−t◦ΦY

t ◦ΦX
t (0) = tY (0)+

t2

2

(
(DY )(0)Y (0)+2(DY )(0)X(0)−(DX)(0)Y (0)−(DX)(0)X(0)

)
+O(t3).

Step 3: Apply ΦY
−t:

ΦY
−t(w) = w − tY (w) +

t2

2
(DY )(w) · Y (w) +O(t3).
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Expand Y (w) near 0:

Y (w) = Y (0) + (DY )(0)w +O(t2),

with
w = tY (0) +O(t2).

Then,
Y (w) = Y (0) + t(DY )(0)Y (0) +O(t2).

So,

ΦY
−t ◦ ΦX

−t ◦ ΦY
t ◦ ΦX

t (0) = 0 + t2
(
(DY )(0)X(0)− (DX)(0)Y (0)

)
+O(t3).

It can be easily checked that

[X,Y ](0) = (DY )(0)X(0)− (DX)(0)Y (0).

Therefore,

γ(t) = ΦY
−t ◦ ΦX

−t ◦ ΦY
t ◦ ΦX

t (0) = 0 + t2[X,Y ](0) +O(t3),

which completes the proof. □

Exercise 26.4. For such a map φ to exist, it is necessary that [X,Y ] = 0.
We compute:

[X,Y ] = [f(x) ∂y, g(y) ∂x]

= f(x)[∂y, g(y) ∂x]− g(y) ∂x(f(x)) ∂y

= f(x)
dg(y)

dy
∂x − g(y)

df(x)

dx
∂y.

Therefore, [X,Y ] = 0 if and only if

f(x)
dg(y)

dy
= 0 and g(y)

df(x)

dx
= 0.

If df(x)
dx ̸= 0 for some x, then we must have g ≡ 0, which solves the equation

above but does not satisfy φ∗(∂y) = Y . Hence, df(x)
dx ≡ 0. Similarly, we must

have dg(y)
dy ≡ 0.

We conclude that X and Y must be constant vector fields:

X = a ∂y and Y = b ∂x

for some constants a, b ̸= 0. Then, the map φ(x, y) = (by, ax) satisfies
φ∗(∂x) = X and φ∗(∂y) = Y , as desired.
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